The Community for Technology Leaders
Green Image
Issue No. 05 - May (2011 vol. 23)
ISSN: 1041-4347
pp: 788-799
Jun Du , The University of Western Ontario, Ontario
Zhi-Hua Zhou , Nanjing University, Nanjing
Charles X. Ling , The University of Western Ontario, Ontario
ABSTRACT
Cotraining, a paradigm of semisupervised learning, is promised to alleviate effectively the shortage of labeled examples in supervised learning. The standard two-view cotraining requires the data set to be described by two views of features, and previous studies have shown that cotraining works well if the two views satisfy the sufficiency and independence assumptions. In practice, however, these two assumptions are often not known or ensured (even when the two views are given). More commonly, most supervised data sets are described by one set of attributes (one view). Thus, they need be split into two views in order to apply the standard two-view cotraining. In this paper, we first propose a novel approach to empirically verify the two assumptions of cotraining given two views. Then, we design several methods to split single view data sets into two views, in order to make cotraining work reliably well. Our empirical results show that, given a whole or a large labeled training set, our view verification and splitting methods are quite effective. Unfortunately, cotraining is called for precisely when the labeled training set is small. However, given small labeled training sets, we show that the two cotraining assumptions are difficult to verify, and view splitting is unreliable. Our conclusions for cotraining's effectiveness are mixed. If two views are given, and known to satisfy the two assumptions, cotraining works well. Otherwise, based on small labeled training sets, verifying the assumptions or splitting single view into two views are unreliable; thus, it is uncertain whether the standard cotraining would work or not.
INDEX TERMS
Semisupervised learning, cotraining, sufficiency assumption, independence assumption, view splitting, single-view.
CITATION
Jun Du, Zhi-Hua Zhou, Charles X. Ling, "When Does Cotraining Work in Real Data?", IEEE Transactions on Knowledge & Data Engineering, vol. 23, no. , pp. 788-799, May 2011, doi:10.1109/TKDE.2010.158
100 ms
(Ver )