The Community for Technology Leaders
Green Image
Issue No. 11 - November (2010 vol. 22)
ISSN: 1041-4347
pp: 1549-1562
Jim Prentzas , Democritus University of Thrace, Alexandroupolis
Ioannis Hatzilygeroudis , University of Patras, Patras
ABSTRACT
Neurules are a kind of integrated rules integrating neurocomputing and production rules. Each neurule is represented as an adaline unit. Thus, the corresponding neurule base consists of a number of autonomous adaline units (neurules). In this paper, we present the construction process and the inference mechanism of neurules and explore their generalization capabilities. The construction process, which also implements corresponding learning algorithm, creates neurules from a given empirical data set. The inference mechanism of neurules is integrated in its nature; it combines neurocomputing with symbolic processes. It is also interactive, i.e., it interacts with the user asking him/her to provide values for some variables necessary to carry on inference. As shown via experiments, the neurules' integrated inference mechanism is more efficient than the inference mechanism used in connectionist expert systems. Furthermore, neurules generalize much better than their constituent neural component (adaline unit) and are comparable to the backpropagation neural net (BPNN).
INDEX TERMS
Neurosymbolic integration, integrated inference, rule-based reasoning, neurocomputing.
CITATION
Jim Prentzas, Ioannis Hatzilygeroudis, "Integrated Rule-Based Learning and Inference", IEEE Transactions on Knowledge & Data Engineering, vol. 22, no. , pp. 1549-1562, November 2010, doi:10.1109/TKDE.2010.79
97 ms
(Ver 3.1 (10032016))