The Community for Technology Leaders
Green Image
Issue No. 09 - September (2010 vol. 22)
ISSN: 1041-4347
pp: 1203-1218
Zhaonian Zou , Harbin Institute of Technology, Harbin, China
Jianzhong Li , Harbin Institute of Technology, Harbin, China
Hong Gao , Harbin Institute of Technology, Harbin, China
Shuo Zhang , Harbin Institute of Technology, Harbin, China
In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mining uncertain graph data and especially focuses on mining frequent subgraph patterns on an uncertain graph database. A novel model of uncertain graphs is presented, and the frequent subgraph pattern mining problem is formalized by introducing a new measure, called expected support. This problem is proved to be NP-hard. An approximate mining algorithm is proposed to find a set of approximately frequent subgraph patterns by allowing an error tolerance on expected supports of discovered subgraph patterns. The algorithm uses efficient methods to determine whether a subgraph pattern can be output or not and a new pruning method to reduce the complexity of examining subgraph patterns. Analytical and experimental results show that the algorithm is very efficient, accurate, and scalable for large uncertain graph databases. To the best of our knowledge, this paper is the first one to investigate the problem of mining frequent subgraph patterns from uncertain graph data.
Graph mining, uncertain graph, frequent subgraph pattern, algorithm.

J. Li, H. Gao, Z. Zou and S. Zhang, "Mining Frequent Subgraph Patterns from Uncertain Graph Data," in IEEE Transactions on Knowledge & Data Engineering, vol. 22, no. , pp. 1203-1218, 2010.
90 ms
(Ver 3.3 (11022016))