The Community for Technology Leaders
Green Image
Issue No. 06 - June (2010 vol. 22)
ISSN: 1041-4347
pp: 784-797
Claudia Marinica , KOD Team—LINA CNRS, Polytech'Nantes—Site de la Chantrerie, France
Fabrice Guillet , KOD Team—LINA CNRS, Polytech'Nantes—Site de la Chantrerie, France
In Data Mining, the usefulness of association rules is strongly limited by the huge amount of delivered rules. To overcome this drawback, several methods were proposed in the literature such as itemset concise representations, redundancy reduction, and postprocessing. However, being generally based on statistical information, most of these methods do not guarantee that the extracted rules are interesting for the user. Thus, it is crucial to help the decision-maker with an efficient postprocessing step in order to reduce the number of rules. This paper proposes a new interactive approach to prune and filter discovered rules. First, we propose to use ontologies in order to improve the integration of user knowledge in the postprocessing task. Second, we propose the Rule Schema formalism extending the specification language proposed by Liu et al. for user expectations. Furthermore, an interactive framework is designed to assist the user throughout the analyzing task. Applying our new approach over voluminous sets of rules, we were able, by integrating domain expert knowledge in the postprocessing step, to reduce the number of rules to several dozens or less. Moreover, the quality of the filtered rules was validated by the domain expert at various points in the interactive process.
Clustering, classification, and association rules, interactive data exploration and discovery, knowledge management applications.

F. Guillet and C. Marinica, "Knowledge-Based Interactive Postmining of Association Rules Using Ontologies," in IEEE Transactions on Knowledge & Data Engineering, vol. 22, no. , pp. 784-797, 2010.
93 ms
(Ver 3.3 (11022016))