The Community for Technology Leaders
Green Image
Issue No. 07 - July (2009 vol. 21)
ISSN: 1041-4347
pp: 985-998
Kamal Premaratne , University of Miami, Coral Gables
Miroslav Kubat , University of Miami, Coral Gables
Kasun Wickramaratna , University of Miami, Coral Gables
ABSTRACT
Existing research in association mining has focused mainly on how to expedite the search for frequently co-occurring groups of items in “shopping cart” type of transactions; less attention has been paid to methods that exploit these “frequent itemsets” for prediction purposes. This paper contributes to the latter task by proposing a technique that uses partial information about the contents of a shopping cart for the prediction of what else the customer is likely to buy. Using the recently proposed data structure of itemset trees (IT-trees), we obtain, in a computationally efficient manner, all rules whose antecedents contain at least one item from the incomplete shopping cart. Then, we combine these rules by uncertainty processing techniques, including the classical Bayesian decision theory and a new algorithm based on the Dempster-Shafer (DS) theory of evidence combination.
INDEX TERMS
Frequent itemsets, uncertainty processing, Dempster-Shafer theory.
CITATION
Kamal Premaratne, Miroslav Kubat, Kasun Wickramaratna, "Predicting Missing Items in Shopping Carts", IEEE Transactions on Knowledge & Data Engineering, vol. 21, no. , pp. 985-998, July 2009, doi:10.1109/TKDE.2008.229
103 ms
(Ver )