The Community for Technology Leaders
Green Image
Issue No. 07 - July (2009 vol. 21)
ISSN: 1041-4347
pp: 959-973
Muhammed Miah , University of Texas at Arlington, Arlington
Gautam Das , University of Texas at Arlington, Arlington
Vagelis Hristidis , Florida International University, Miami
Heikki Mannila , HIIT, Helsinki University of Technology and University of Helsinki, Helsinki
In recent years, there has been significant interest in the development of ranking functions and efficient top-k retrieval algorithms to help users in ad hoc search and retrieval in databases (e.g., buyers searching for products in a catalog). We introduce a complementary problem: How to guide a seller in selecting the best attributes of a new tuple (e.g., a new product) to highlight so that it stands out in the crowd of existing competitive products and is widely visible to the pool of potential buyers. We develop several formulations of this problem. Although the problems are NP-complete, we give several exact and approximation algorithms that work well in practice. One type of exact algorithms is based on Integer Programming (IP) formulations of the problems. Another class of exact methods is based on maximal frequent item set mining algorithms. The approximation algorithms are based on greedy heuristics. A detailed performance study illustrates the benefits of our methods on real and synthetic data.
Data mining, knowledge and data engineering tools and techniques, marketing, mining methods and algorithms, retrieval models.

H. Mannila, V. Hristidis, G. Das and M. Miah, "Determining Attributes to Maximize Visibility of Objects," in IEEE Transactions on Knowledge & Data Engineering, vol. 21, no. , pp. 959-973, 2009.
92 ms
(Ver 3.3 (11022016))