The Community for Technology Leaders
Green Image
Issue No. 12 - December (2008 vol. 20)
ISSN: 1041-4347
pp: 1587-1600
Martin Stetter , SIEMENS AG., Munich
Wilfried Brauer , Institue of Informatics, Munich
Rui Chang , Technical University Munich, Munich
ABSTRACT
In this paper, we consider the problem of performing quantitative Bayesian inference and model averaging based on a set of qualitative statements about relationships. Statements are transformed into parameter constraints which are imposed onto a set of Bayesian networks. Recurrent relationship structures are resolved by unfolding in time to Dynamic Bayesian networks. The approach enables probabilistic inference by model averaging, i.e. it allows to predict probabilistic quantities from a set of qualitative constraints without probability assignment on the model parameters. Model averaging is performed by Monte Carlo integration techniques. The method is applied to a problem in a molecular medical context: We show how the rate of breast cancer metastasis formation can be predicted based solely on a set of qualitative biological statements about the involvement of proteins in metastatic processes.
INDEX TERMS
Probability and Statistics, Probabilistic algorithms, Uncertainty, "fuzzy", and probabilistic reasoning, Monte Carlo, Applications and Expert Knowledge-Intensive Systems, Knowledge modeling, Knowledge engineering methodologies, Biology and genetics
CITATION
Martin Stetter, Wilfried Brauer, Rui Chang, "Quantitative Inference by Qualitative Semantic Knowledge Mining with Bayesian Model Averaging", IEEE Transactions on Knowledge & Data Engineering, vol. 20, no. , pp. 1587-1600, December 2008, doi:10.1109/TKDE.2008.89
107 ms
(Ver 3.1 (10032016))