The Community for Technology Leaders
Green Image
Issue No. 10 - October (2008 vol. 20)
ISSN: 1041-4347
pp: 1336-1347
Alok Sharma , Griffith University, Brisbane and University of the South Pacific, Fiji
Kuldip K. Paliwal , Griffith University, Brisbane
The linear discriminant analysis (LDA) technique is very popular in pattern recognition for dimensionality reduction. It is a supervised learning technique that finds a linear transformation such that the overlapping between the classes is minimum for the projected feature vectors in the reduced feature space. This overlapping, if present, adversely affects the classification performance. In this paper, we introduce prior to dimensionality-reduction transformation an additional rotational transform that rotates the feature vectors in the original feature space around their respective class centroids in such a way that the overlapping between the classes in the reduced feature space is further minimized. As a result, the classification performance significantly improves which is demonstrated using several data corpuses.
Pattern Recognition, Statistical

K. K. Paliwal and A. Sharma, "Rotational Linear Discriminant Analysis Technique for Dimensionality Reduction," in IEEE Transactions on Knowledge & Data Engineering, vol. 20, no. , pp. 1336-1347, 2008.
87 ms
(Ver 3.3 (11022016))