The Community for Technology Leaders
Green Image
Issue No. 08 - August (2007 vol. 19)
ISSN: 1041-4347
pp: 1042-1056
Jiawei Han , IEEE
Previous studies have presented convincing arguments that a frequent pattern mining algorithm should not mine all frequent patterns but only the closed ones because the latter leads to not only a more compact yet complete result set but also better efficiency. However, most of the previously developed closed pattern mining algorithms work under the candidate maintenance-and-test paradigm, which is inherently costly in both runtime and space usage when the support threshold is low or the patterns become long. In this paper, we present BIDE, an efficient algorithm for mining frequent closed sequences without candidate maintenance. It adopts a novel sequence closure checking scheme called BI-Directional Extension and prunes the search space more deeply compared to the previous algorithms by using the BackScan pruning method. A thorough performance study with both sparse and dense, real, and synthetic data sets has demonstrated that BIDE significantly outperforms the previous algorithm: It consumes an order(s) of magnitude less memory and can be more than an order of magnitude faster. It is also linearly scalable in terms of database size.
Data mining, frequent closed sequences, BI-Directional Extension.

C. Li, J. Han and J. Wang, "Frequent Closed Sequence Mining without Candidate Maintenance," in IEEE Transactions on Knowledge & Data Engineering, vol. 19, no. , pp. 1042-1056, 2007.
88 ms
(Ver 3.3 (11022016))