The Community for Technology Leaders
Green Image
Issue No. 04 - April (2007 vol. 19)
ISSN: 1041-4347
pp: 500-508
Ludmila I. Kuncheva , School of Informatics, University of Wales, Bangor, Bangor, Gwynedd, UK
Juan J. Rodriguez , Escuela Politecnica Superior, Edificio C, Universidad de Burgos, Burgos, Spain
ABSTRACT
We propose a combined fusion-selection approach to classifier ensemble design. Each classifier in the ensemble is replaced by a miniensemble of a pair of subclassifiers with a random linear oracle to choose between the two. It is argued that this approach encourages extra diversity in the ensemble while allowing for high accuracy of the individual ensemble members. Experiments were carried out with 35 data sets from UCI and 11 ensemble models. Each ensemble model was examined with and without the oracle. The results showed that all ensemble methods benefited from the new approach, most markedly so random subspace and bagging. A further experiment with seven real medical data sets demonstrates the validity of these findings outside the UCI data collection
INDEX TERMS
Decision trees, Computer Society, Cultural differences, Bagging, Voting, Informatics
CITATION

L. I. Kuncheva and J. J. Rodriguez, "Classifier Ensembles with a Random Linear Oracle," in IEEE Transactions on Knowledge & Data Engineering, vol. 19, no. 4, pp. 500-508, 2008.
doi:10.1109/TKDE.2007.1016
95 ms
(Ver 3.3 (11022016))