The Community for Technology Leaders
Green Image
Issue No. 11 - November (2006 vol. 18)
ISSN: 1041-4347
pp: 1441-1456
Ehud Gudes , IEEE Computer Society
Solomon Eyal Shimony , IEEE Computer Society
Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data mining, the issue is frequent labels and common specific topologies. Here, the structure of the data is just as important as its content. We study the problem of discovering typical patterns of graph data, a task made difficult because of the complexity of required subtasks, especially subgraph isomorphism. In this paper, we propose a new Apriori-based algorithm for mining graph data, where the basic building blocks are relatively large, disjoint paths. The algorithm is proven to be sound and complete. Empirical evidence shows practical advantages of our approach for certain categories of graphs.
Database applications, data mining, mining methods and algorithms, Web mining, graph mining.

E. Gudes, S. E. Shimony and N. Vanetik, "Discovering Frequent Graph Patterns Using Disjoint Paths," in IEEE Transactions on Knowledge & Data Engineering, vol. 18, no. , pp. 1441-1456, 2006.
93 ms
(Ver 3.3 (11022016))