The Community for Technology Leaders
RSS Icon
Issue No.08 - August (2006 vol.18)
pp: 1055-1067
Qiang Yang , IEEE
In medical diagnosis, doctors must often determine what medical tests (e.g., X-ray and blood tests) should be ordered for a patient to minimize the total cost of medical tests and misdiagnosis. In this paper, we design cost-sensitive machine learning algorithms to model this learning and diagnosis process. Medical tests are like attributes in machine learning whose values may be obtained at a cost (attribute cost), and misdiagnoses are like misclassifications which may also incur a cost (misclassification cost). We first propose a lazy decision tree learning algorithm that minimizes the sum of attribute costs and misclassification costs. Then, we design several novel "test strategies” that can request to obtain values of unknown attributes at a cost (similar to doctors' ordering of medical tests at a cost) in order to minimize the total cost for test examples (new patients). These test strategies correspond to different situations in real-world diagnoses. We empirically evaluate these test strategies, and show that they are effective and outperform previous methods. Our results can be readily applied to real-world diagnosis tasks. A case study on heart disease is given throughout the paper.
Induction, concept learning, mining methods and algorithms, classification.
Charles X. Ling, Victor S. Sheng, Qiang Yang, "Test Strategies for Cost-Sensitive Decision Trees", IEEE Transactions on Knowledge & Data Engineering, vol.18, no. 8, pp. 1055-1067, August 2006, doi:10.1109/TKDE.2006.131
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool