The Community for Technology Leaders
Green Image
Issue No. 10 - October (2004 vol. 16)
ISSN: 1041-4347
pp: 1305-1308
Wee-Keong Ng , IEEE Computer Society
One common approach in hierarchical text classification involves associating classifiers with nodes in the category tree and classifying text documents in a top-down manner. Classification methods using this top-down approach can scale well and cope with changes to the category trees. However, all these methods suffer from blocking which refers to documents wrongly rejected by the classifiers at higher-levels and cannot be passed to the classifiers at lower-levels. In this paper, we propose a classifier-centric performance measure known as blocking factor to determine the extent of the blocking. Three methods are proposed to address the blocking problem, namely, Threshold Reduction, Restricted Voting, and Extended Multiplicative. Our experiments using Support Vector Machine (SVM) classifiers on the Reuters collection have shown that they all could reduce blocking and improve the classification accuracy. Our experiments have also shown that the Restricted Voting method delivered the best performance.
Data mining, text mining, classification.
Aixin Sun, Ee-Peng Lim, Wee-Keong Ng, Jaideep Srivastava, "Blocking Reduction Strategies in Hierarchical Text Classification", IEEE Transactions on Knowledge & Data Engineering, vol. 16, no. , pp. 1305-1308, October 2004, doi:10.1109/TKDE.2004.50
94 ms
(Ver 3.3 (11022016))