The Community for Technology Leaders
Green Image
Issue No. 05 - September/October (2003 vol. 15)
ISSN: 1041-4347
pp: 1099-1119
Yi Deng , IEEE
<p><b>Abstract</b>—Security system architecture governs the composition of components in security systems and interactions between them. It plays a central role in the design of software security systems that ensure secure access to distributed resources in networked environment. In particular, the composition of the systems must consistently assure security policies that it is supposed to enforce. However, there is currently no rigorous and systematic way to predict and assure such critical properties in security system design. In this paper, a systematic approach is introduced to address the problem. We present a methodology for modeling security system architecture and for verifying whether required security constraints are assured by the composition of the components. We introduce the concept of security constraint patterns, which formally specify the generic form of security policies that all implementations of the system architecture must enforce. The analysis of the architecture is driven by the propagation of the global security constraints onto the components in an incremental process. We show that our methodology is both flexible and scalable. It is argued that such a methodology not only ensures the integrity of critical early design decisions, but also provides a framework to guide correct implementations of the design. We demonstrate the methodology through a case study in which we model and analyze the architecture of the Resource Access Decision (RAD) Facility, an OMG standard for application-level authorization service.</p>
Software security, security system architecture, access control, authorization service, formal architectural modeling, constraint patterns, formal verification, Petri nets, temporal logic.

K. Beznosov, J. J. Tsai, Y. Deng and J. Wang, "An Approach for Modeling and Analysis of Security System Architectures," in IEEE Transactions on Knowledge & Data Engineering, vol. 15, no. , pp. 1099-1119, 2003.
84 ms
(Ver 3.3 (11022016))