The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—<it>Deductive databases</it> have the ability to deduce new facts from a set of facts using a set of rules. They are also useful in the integration of artificial intelligence and database. However, when <it>recursive rules</it> are involved, the amount of deduced facts can become too large to be practically stored, viewed or analyzed. This seriously hinders the usefulness of deductive databases. In order to overcome this problem, we propose four methods to discover <it>characteristic rules</it> from large amount of deduction results without actually having to store all the deduction results. This paper presents the first step in the application of knowledge discovery techniques to deductive databases with large deduction results.</p>
Attribute-oriented algorithm, characteristic rule, data mining, deductive database, recursive rule.
Masahiko Tsukamoto, Shojiro Nishio, Chien-Le Goh, "Knowledge Discovery in Deductive Databases with Large Deduction Results: The First Step", IEEE Transactions on Knowledge & Data Engineering, vol. 8, no. , pp. 952-956, December 1996, doi:10.1109/69.553162
88 ms
(Ver 3.3 (11022016))