The Community for Technology Leaders
Green Image
<p><it>Abstract</it>—We propose a novel unified approach for integrating explicit knowledge and learning by example in recurrent networks. The explicit knowledge is represented by automaton rules, which are directly injected into the connections of a network. This can be accomplished by using a technique based on linear programming, instead of learning from random initial weights. Learning is conceived as a refinement process and is mainly responsible for uncertain information management. We present preliminary results for problems of automatic speech recognition.</p>
Recurrent neural networks, learning automata, automatic speech recognition.
Giovanni Soda, Marco Gori, Marco Maggini, Paolo Frasconi, "Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks", IEEE Transactions on Knowledge & Data Engineering, vol. 7, no. , pp. 340-346, April 1995, doi:10.1109/69.382304
105 ms
(Ver 3.3 (11022016))