The Community for Technology Leaders
Green Image
Issue No. 02 - June (1991 vol. 3)
ISSN: 1041-4347
pp: 252-256
<p>A paradigm is developed for a controller to learn to control an environment by use of a benefit measure to judge the control. Rules are acquired that fire in a stimulus-response fashion for control, and rules continue to be acquired to adapt to an evolving environment. The model includes both knowledge acquisition and skill refinement through bottom-up (data driven) learning of the top-down control strategy. It is more flexible than hardware learning systems such as ADELINE or MADELINE. The controller model self-organizes by acquiring rules, and adapts by continuing to update its rules while controlling an external environment. It does this by judging the benefit of feedback due to the selected control rules and keeping counts in cells from which a rule function is generated.</p>
expert controllers; stimulus-response fashion; evolving environment; knowledge acquisition; skill refinement; top-down control strategy; self-organizes; external environment; feedback; selected control rules; rule function; computerised control; expert systems; knowledge acquisition; learning systems
C.G. Looney, "Rule Acquiring Expert Controllers", IEEE Transactions on Knowledge & Data Engineering, vol. 3, no. , pp. 252-256, June 1991, doi:10.1109/69.88005
99 ms
(Ver 3.3 (11022016))