The Community for Technology Leaders
Green Image
Issue No. 12 - Dec. (2014 vol. 20)
ISSN: 1077-2626
pp: 2565-2574
Franz Sauer , , University of California, Davis
Hongfeng Yu , , University of Nebraska, Lincoln
Kwan-Liu Ma , , University of California, Davis
Studying the dynamic evolution of time-varying volumetric data is essential in countless scientific endeavors. The ability to isolate and track features of interest allows domain scientists to better manage large complex datasets both in terms of visual understanding and computational efficiency. This work presents a new trajectory-based feature tracking technique for use in joint particle/volume datasets. While traditional feature tracking approaches generally require a high temporal resolution, this method utilizes the indexed trajectories of corresponding Lagrangian particle data to efficiently track features over large jumps in time. Such a technique is especially useful for situations where the volume dataset is either temporally sparse or too large to efficiently track a feature through all intermediate timesteps. In addition, this paper presents a few other applications of this approach, such as the ability to efficiently track the internal properties of volumetric features using variables from the particle data. We demonstrate the effectiveness of this technique using real world combustion and atmospheric datasets and compare it to existing tracking methods to justify its advantages and accuracy.
Feature extraction, Data mining, Trajectory, Atmospheric modeling, Volume measurement, Three-dimensional displays, Time-varying systems

F. Sauer, H. Yu and K. Ma, "Trajectory-Based Flow Feature Tracking in Joint Particle/Volume Datasets," in IEEE Transactions on Visualization & Computer Graphics, vol. 20, no. 12, pp. 2565-2574, 2014.
536 ms
(Ver 3.3 (11022016))