The Community for Technology Leaders
Green Image
Issue No. 12 - Dec. (2014 vol. 20)
ISSN: 1077-2626
pp: 2437-2446
Marco Ament , , Karlsruhe Institute of Technology, Germany
Filip Sadlo , , University of Stuttgart, Germany
Carsten Dachsbacher , , Karlsruhe Institute of Technology, Germany
Daniel Weiskopf , , University of Stuttgart, Germany
We present a novel and efficient method to compute volumetric soft shadows for interactive direct volume visualization to improve the perception of spatial depth. By direct control of the softness of volumetric shadows, disturbing visual patterns due to hard shadows can be avoided and users can adapt the illumination to their personal and application-specific requirements. We compute the shadowing of a point in the data set by employing spatial filtering of the optical depth over a finite area patch pointing toward each light source. Conceptually, the area patch spans a volumetric region that is sampled with shadow rays; afterward, the resulting optical depth values are convolved with a low-pass filter on the patch. In the numerical computation, however, to avoid expensive shadow ray marching, we show how to align and set up summed area tables for both directional and point light sources. Once computed, the summed area tables enable efficient evaluation of soft shadows for each point in constant time without shadow ray marching and the softness of the shadows can be controlled interactively. We integrated our method in a GPU-based volume renderer with ray casting from the camera, which offers interactive control of the transfer function, light source positions, and viewpoint, for both static and time-dependent data sets. Our results demonstrate the benefit of soft shadows for visualization to achieve user-controlled illumination with many-point lighting setups for improved perception combined with high rendering speed.
Light sources, Filtering, Scattering, Optical filters, Transfer functions, Data visualization, Volume measurement, Low-pass filters

M. Ament, F. Sadlo, C. Dachsbacher and D. Weiskopf, "Low-Pass Filtered Volumetric Shadows," in IEEE Transactions on Visualization & Computer Graphics, vol. 20, no. 12, pp. 2437-2446, 2014.
382 ms
(Ver 3.3 (11022016))