The Community for Technology Leaders
Green Image
Issue No. 03 - March (2013 vol. 19)
ISSN: 1077-2626
pp: 446-459
Lin Zheng , Dept. of Comput. Sci., Univ. of California, Davis, Davis, CA, USA
Yingcai Wu , Microsoft Res. Asia, Beijing, China
Kwan-Liu Ma , Dept. of Comput. Sci., Univ. of California, Davis, Davis, CA, USA
Visualizing complex volume data usually renders selected parts of the volume semitransparently to see inner structures of the volume or provide a context. This presents a challenge for volume rendering methods to produce images with unambiguous depth-ordering perception. Existing methods use visual cues such as halos and shadows to enhance depth perception. Along with other limitations, these methods introduce redundant information and require additional overhead. This paper presents a new approach to enhancing depth-ordering perception of volume rendered images without using additional visual cues. We set up an energy function based on quantitative perception models to measure the quality of the images in terms of the effectiveness of depth-ordering and transparency perception as well as the faithfulness of the information revealed. Guided by the function, we use a conjugate gradient method to iteratively and judiciously enhance the results. Our method can complement existing systems for enhancing volume rendering results. The experimental results demonstrate the usefulness and effectiveness of our approach.
Rendering (computer graphics), Junctions, Image color analysis, Transfer functions, Visualization, Optimization, Solid modeling

Lin Zheng, Yingcai Wu and Kwan-Liu Ma, "Perceptually-Based Depth-Ordering Enhancement for Direct Volume Rendering," in IEEE Transactions on Visualization & Computer Graphics, vol. 19, no. 3, pp. 446-459, 2013.
388 ms
(Ver 3.3 (11022016))