The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2908-2916
Margit Pohl , Vienna University of Technology
Michael Smuc , Danube University Krems
Eva Mayr , Danube University Krems
Visual analytics emphasizes the interplay between visualization, analytical procedures performed by computers and human perceptual and cognitive activities. Human reasoning is an important element in this context. There are several theories in psychology and HCI explaining open-ended and exploratory reasoning. Five of these theories (sensemaking theories, gestalt theories, distributed cognition, graph comprehension theories and skill-rule-knowledge models) are described in this paper. We discuss their relevance for visual analytics. In order to do this more systematically, we developed a schema of categories relevant for visual analytics research and evaluation. All these theories have strengths but also weaknesses in explaining interaction with visual analytics systems. A possibility to overcome the weaknesses would be to combine two or more of these theories.
Cognition, Human factors, Visual analytics, Psychology, Problem-solving, problem solving, Cognitive theory, visual knowledge discovery, interaction design, reasoning
Margit Pohl, Michael Smuc, Eva Mayr, "The User Puzzle—Explaining the Interaction with Visual Analytics Systems", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2908-2916, Dec. 2012, doi:10.1109/TVCG.2012.273
[1] J. Anderson., Kognitive Psychologie. Spektrum Akademischer Verlag: Heidelberg, 3rd edition, 2001.
[2] N. Andrienko and G. Andrienko., Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer-Verlag New York, 2005.
[3] S. J. Attfield, S. K. Hara, B. L. W. Wong., Sensemaking in Visual Analytics: Processes and Challenges. In: J. Kohlhammer,D. Keim (eds.) , International Symposium on Visual Analytics Science and Technology, 2010.
[4] S. K. Card, J. D. Mackinlay, B. Shneiderman., Information visualization: Using vision to think. Morgan-Kaufmann: San Diego, London, San Francisco, 1999.
[5] P. A. Carpenter,P. Shah., A Model of the Perceptual and Conceptual Processes in Graph Comprehension. J. Exp. Psychol-Appl. 4, pp. 75-100, 1998.
[6] R. Chang, C. Ziemkiewicz, T. M. Green,W. Ribarsky., Defining insight for visual analytics. IEEE Comput. Graph. Appl., 29, 2, pp. 14-17, 2009.
[7] A. Clark., Being There. Putting Brain, Body, and World Together Again. The MIT Press, 1997.
[8] J. E. Davidson., Insights about Insightful Problem Solving. In: J. E. Davidson,R. J. Sternberg (eds.) The Psychology of Problem Solving. Cambridge University Press: Cambridge, pp. 149-175, 2003
[9] R. L. Dominowski,P. Dallob.,, Insights and Problem Solving. In: R. J. Sternberg,J. E. Davidson (eds.) The Nature of Insight. The MIT Press, pp. 33-62, 1995.
[10] W. Dou, D. H. Jeong, F. Stukes., W. Ribarsky, H. R. Lipford,R. Chang., Recovering Reasoning Processes from User Interactions. IEEE Comput. Graph. Appl., 29, 3, 2009, pp. 52-61, 2009.
[11] J. St., B. T. Evans., Deductive Reasoning. In: K. J. Holyoak,R. G. Morrison (eds.) , The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press: Cambridge, pp. 169-184, 2005.
[12] S. N. Friel, F. R. Curcio, and G. W. Bright, Making sense of graphs: Critical factors influencing comprehension and instructional implications Journal for Research in Mathematics Education, 32, pp. 124-158, 2001.
[13] T. Green,W. Ribarsky, and B. Fisher., Visual analytics for complex concepts using a human cognition model. In: D. Ebert, and T. Ertl (eds.) , IEEE Visual Analytics Science and Technology: VAST ‘08; 21-23 October. Columbus, OH, Los Alamitos, CA: IEEE Computer Society Press, pp. 91-98, 2008.
[14] T. M. Green, B. Fisher, B. The, Personal Equation of Complex Individual Cognition during Visual Interface Interaction. In: A. Ebert, A. Dix, N. D. Gershon,M. Pohl (eds.) , Human Aspects of Visualization: Second IFIP WG 13.7 Workshop on Human-Computer Interaction and Visualization (HCIV/INTERACT) 2009, Springer: Berlin, Heidelberg, New York, pp. 38-57, 2011.
[15] C. G. Healey, K. S. Booth, J. T. Enns,J. T. (1996). High-speed visual estimation using preattentive processing. ACM Trans Comput Hum Interact. (TOCHI), 3(2), pp. 107-135, 1996.
[16] E. Hetzler,A. Turner., Analysis experiences using information visualization. IEEE Comput. Graph. Appl., 24, 5, pp. 22-26, 2004.
[17] J. Hollan, E. Hutchins, D. Kirsh., Distributed cognition: Toward a new foundation for Human-Computer Interaction Research. ACM Trans Comput Hum Interact., 7, 2, pp. 174-196, 2000.
[18] E. Hutchins., Cognition in the wild. MIT Press, 1995.
[19] P. Isenberg, D. Fisher, S. A. Paul,M. Ringel Morris, K. Inkpen, M. Czerwinski., Co-Located Collaborative Visual Analytics around a Tabletop Display. IEEE Trans. Vis. Comput. Graphics, 18, 5, pp. 689-702, 2012.
[20] T. J. Jankun-Kelly,R. Chang., Process + Interaction + Insight: The Need for Analytic Provenance. In: Proceedings of the VAST 2011.
[21] D. Keirn, P. Bak, E. Bertini., Advanced Visual Analytics Interfaces. In: Proceedings of the AVI ‘10 conference, pp. 3-10, 2010.
[22] D. Keirn, G. Andrienko, J.-D. Fekete,C. Görg, J. Kohlhammer, and G. Melancon, Visual analytics: Definition, process, and challenges Information Visualization, pp. 154-175, 2008.
[23] D. Kirsh, P. Maglio, P. On, distinguishing epistemic from pragmatic action. Cognitive science, 18, 4, pp. 513-549, 1994.
[24] G. Klein, B. Moon, R. R. Hoffman., Making sense of sensemaking 2: A macrocognitive model. IEEE Intell. Syst., 21, 5, pp. 88-92, 2006b.
[25] G. Klein, B. Moon, R. R. Hoffman., Making sense of sensemaking 1: Alternative perspectives. IEEE Intell Syst., 21, 4, pp. 70-73, 2006a.
[26] S. Kosslyn, Understanding Charts and Graphs Appl. Cogn. Psychol. 3, pp. 185-225, 1989.
[27] H. Lam, E. Bertini, P. Isenberg., C. Plaisant, S. Carpendale., Empirical Studies in Information Visualization: Seven Scenarios. IEEE Trans. Vis. Comput. Graphics 99, pp. 1520-1536, 2011.
[28] H. R. Lipford, F. Stukes, W. Dou,M. E. Hawkins,R. Chang., Helping Users Recall Their Reasoning Process. In: Proceedings of the VAST 2010, pp. 187-194, 2010.
[29] Z. Liu, N. J. Nersessian, J. Stasko., Distributed Cognition as a Theoretical Framework for Information Visualization. IEEE Trans. Vis. Comput. Graphics, 14, 6, pp. 1173-1180, 2008.
[30] R. Mayer., The search for insight: Grappling with gestalt psychology's unanswered questions. In: R. J. Sternberg,J. E. Davidson (eds.) The Nature of Insight. The MIT Press, pp. 3-32, 1995.
[31] E. Mayr, M. Smuc, H. Risku., Many Roads Lead to Rome. Mapping Users’ Problem Solving Strategies. Information Visualization, 10 3, pp. 232-247, 2011.
[32] B. Mirel., Interaction Design for Complex Problem Solving. Elsevier, Morgan Kaufmann: Amsterdam, Boston, Heidelberg, 2004.
[33] L. R. Novick,M. Bassok., Problem Solving. In: K. J. Holyoak,R. G. Morrison (eds.) , The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press: Cambridge, pp. 321-349, 2005.
[34] C. North, Toward measuring visualization insight IEEE Comput. Graph. Appl., 26(3), pp. 6-9, 2006.
[35] C. O’ Malley,S. Draper., Representation and Interaction: Are Mental Models all in the Mind. In: Y. Rogers, A. Rutherford, P. A. Bibby (eds.) , Models in the Mind: Theory Perspective and Application, Academic Press: London, San Diego, pp. 73-91, 1992.
[36] M. Perry., Distributed Cognition. In: J. M. Carroll (ed.) , HCI Models, Theories and Frameworks. Morgan Kaufmann Publishers: San Francisco, pp. 193-223, 2003.
[37] W. A. Pike, J. Stasko, R. Chang,T. A. O'Connell., The science of interaction. Information Visulization, 8, 4, pp. 263-274, 2009.
[38] S. Pinker, A theory of graph comprehension. In R. Freedle (ed.) , Artificial Intelligence and the Future of Testing, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 73-126, 1990.
[39] P. Pirolli., Exploring and Finding Information. In: J. M. Carroll (ed.) , HCI - Models, Theories, and Frameworks. Morgan Kaufmann Publishers: San Francisco, pp. 157-191, 2003.
[40] P. Pirolli,S. Card., The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis. In: Proceedings of International Conference on Intelligence Analysis, pp. 2-4, 2005.
[41] C. Plaisant, J.-D. Fekete, G. Grinstein., Promoting Insight-Based Evaluation of Visualizations: From Contest to Benchmark Repository. IEEE Trans. Vis. Comput. Graphics, 14, 1, pp. 120-134, 2008.
[42] M. Pohl, S. Wiltner, S. Miksch., W. Aigner, A. Rind., Analysing Interactivity in Information Visualisation. KI - Künstliche Intelligenz, 26, no. 2, pp. 151-159, 2012.
[43] J. E. Pretz, J. Naples, R. J. Sternberg., Recognizing, Defining, and Representing Problems. In: J. E. Davidson,R. J. Sternberg (eds.) The Psychology of Problem Solving. Cambridge University Press: Cambridge, pp. 3-30, 2003.
[44] R. M. Ratwani,J. G. Trafton, and D. A. Boehm-Davis,From Specific Information Extraction to Inferences: A Hierarchical Framework of Graph Comprehension. Human Factors and Ergonomics Society Annual Meeting Proceedings (48), pp. 1808-1812, 2004.
[45] J. Reason., Human Error (1st Ed.). Cambridge University Press: Cambridge, 1990.
[46] J. Rasmussen,L. P. Goodstein., Decision support in supervisory control. Ris⊘National Laboratory, 1985.
[47] D. M. Russell, M. J. Stefik, P. Pirolli,P., S. Card., The cost structure of sensemaking. In: INTERCHI ‘93 Conference on Human Factors in Computing Systems, Amsterdam, pp. 269-276, 1993.
[48] G. Salomon (ed.) Distributed Cognition. Psychological and Educational Considerations. Cambridge University Press: Cambridge, 1993.
[49] P. B. Saraiya, C. North, K. Duca., An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Vis. Comput. Graph. 11, pp. 443-456, 2005.
[50] M. Scaife,Y. Rogers., External cognition: how do graphical representations work? Int. J. Human-Computer Studies 45, pp. 185-213, 1996.
[51] P. Shah,E. G. Freedman., Bar and Line Graph Comprehension: An Interaction of Top-Down and Bottom-Up Processes. Topics in Cognitive Science, 3, 3, pp. 560-578, 2011.
[52] P. Shah,A. Miyake (eds.) , The Cambridge Handbook of Visuospatial Thinking. Cambridge University Press: Cambridge, 2005.
[53] P. Shah, E. G. Freedman, I. Vekiri., The Comprehension of Quantitative Information in Graphical Displays. In: P. Shah,A. Miyake (eds.) , The Cambridge Handbook of Visuospatial Thinking. Cambridge University Press, pp. 426-476, 2005.
[54] B. Shneiderman., The eyes have it: a task by data type taxonomy for information visualizations. Proceedings IEEE Symposium on Visual Languages, pp. 336-343, 1996.
[55] B. Shneiderman,C. Plaisant., Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In BELIV‘06, pp. 1-7, 2006.
[56] M. Smuc, Unveiling the Exploratory Mind. A Cognitive Approach to Human-Graph Interaction Proceedings of the Diagrams Graduate Symposium, pp. 8-12, 2010.
[57] M. Smuc, E. Mayr, T., Lammarsch,W., Aigner,S., Miksch, and J. Gärtner., To score or not to score? Tripling insights for participatory design. IEEE Comput. Graph. Appl., 29, 3, 29-38, 2009.
[58] J. J. Thomas,K. A. Cook., Illuminating the Path. IEEE Press, 2005.
[59] J. G. Trafton,S. B. Tricket., A new Model of Graph and Visualization Usage. The Proceedings of the 23rd Annual Conference of the CSS, pp. 1048-1053, 2001.
[60] B. Tversky., Visuospatial Reasoning. In: K. J. Holyoak,R. G. Morrison (eds.) , The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press, pp. 209-240, 2nd reprint 2007.
[61] B. Tversky,J. Bauer Morrison,, and M. Betrancourt., Animation: can it facilitate? International Journal of Human-Computer Studies, 57, pp. 247-262, 2002.
[62] R. W. Weisberg., Prolegomena to Theories of Insight in Problem Solving: A Taxonomy of Problems. In: R. J. Sternberg,J. E. Davidson (eds.) The Nature of Insight. The MIT Press, pp. 157-195, 1995.
[63] J. S. Yi, Y. Kang, J. T. Stasko,J. Jacko.,, Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graphics, 13, 6, pp. 1224-1231, 2007.
[64] J. S. Yi, Y.-a. Kang, J. T. Stasko,, and J. A. Jacko., Understanding and characterizing insights: how do people gain insights using information visualization? In BELIV‘08, pp. 1-6, 2008.
[65] C. Ziemkiewicz, R. J. Crouser, A. R. Yauilla, S. L. Su, W. Ribarsky,R. Chang., How locus of control influences compatibility with visualization style. In: Visual Analytics Science and Technology (VAST), pp. 81-90, 2011.
29 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool