The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2889-2898
M. Burch , Univ. Stuttgart, Stuttgart, Germany
D. Weiskopf , Univ. Stuttgart, Stuttgart, Germany
Eye movement analysis is gaining popularity as a tool for evaluation of visual displays and interfaces. However, the existing methods and tools for analyzing eye movements and scanpaths are limited in terms of the tasks they can support and effectiveness for large data and data with high variation. We have performed an extensive empirical evaluation of a broad range of visual analytics methods used in analysis of geographic movement data. The methods have been tested for the applicability to eye tracking data and the capability to extract useful knowledge about users' viewing behaviors. This allowed us to select the suitable methods and match them to possible analysis tasks they can support. The paper describes how the methods work in application to eye tracking data and provides guidelines for method selection depending on the analysis tasks.
user interfaces, data visualisation, eye, knowledge acquisition, task analysis, visual analytics methodology, eye movement study, eye movement analysis, visual displays evaluation, visual interfaces, scanpaths, empirical evaluation, geographic movement data, eye tracking data, knowledge extraction, viewing behaviors, Trajectory, Tracking, Visual analytics, Data visualization, Standards, Eye, trajectory analysis, Visual analytics, eye tracking, movement data
G. Andrienko, N. Andrienko, M. Burch, D. Weiskopf, "Visual Analytics Methodology for Eye Movement Studies", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2889-2898, Dec. 2012, doi:10.1109/TVCG.2012.276
[1] G. Andrienko, N. Andrienko, S. Wrobel., Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations, 9(2): 38-46, Dec. 2007
[2] G. Andrienko,N. Andrienko., Poster: Dynamic time transformation for interpreting clusters of trajectories with space-time cube. In Proceedings of IEEE VAST 2010, pp. 213-214, Oct. 2010
[3] G. Andrienko, N. Andrienko, P. Bak., D. Keim, S. Kisilevich,S. Wrobel., A conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual Languages and Computing, 22(3): 213-223, Jun. 2011
[4] G. Andrienko, N. Andrienko, M. Burch,D. Weiskopf., Supplementary materials to this paper. /
[5] G. Andrienko, N. Andrienko, M. Heurich., An event-based conceptual model for context-aware movement analysis. International Journal on Geographical Information Science, 25(9): 1347-1370, 2011
[6] N. Andrienko,G. Andrienko., Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 17(2): 205-219, Feb. 2011
[7] N. Andrienko, G. Andrienko, H. Stange., T. Liebig, D. Hecker., Visual analytics for understanding spatial situations from episodic movement data. Künstliche Intelligenz, 26(3): 241-251, 2012
[8] A. Bojko., Informative or misleading? Heatmaps deconstructed. In J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCn 2009, LNSC 5610, pp. 30-39, Springe, 2009
[9] M. Burch, N. Konevtsova, J. Heinrich., M. Höferlin, D. Weiskopf.,, Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Transactions on Visualization and Computer Graphics, 17(12): 2440-2448, Dec. 2011
[10] A. Çöltekin, S.l. Fabrikant, M. Lacayo., Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. International Journal on Geographical Information Science, 24(10): 1559-1575, Oct. 2010
[11] A. Çöltekin, B. Heil, S. Garlandini,S.l. Fabrikant., Evaluating the effectiveness of interactive map interface designs: A case study integrating usability metrics with eye-movement analysis, Cartography and Geographic Information Science, 36(1): 5-17, Jan. 2009
[12] T.F. Cox,M.A.A. Cox., Multidimensional Scaling. Chapman and Hall, 2001
[13] T. Crnovrsanin,C. Muelder,C. Correa,K.-L. Ma., Proximity-based visualization of movement trace data. In Proceedings of IEEE VAST 2009, pp. 11-18, Oct. 2009
[14] S. Dodge, R. Weibel, E. Forootan., Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems, 33(6): 419-434, Nov. 2009
[15] A.T. Duchowski, J. Driver, W. Tan., A. Robbins, B. N. Ramey,S. Jolaoso., Scanpath comparison revisited. In Proceedings of the Symposium on Eye Tracking Research & Applications (ETRA 2010), pp. 219-226, Mar. 2010
[16] S.l. Fabrikant,S. Rebich-Hespanha, N. Andrienko, G. Andrienko,D. R. Montello., Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. The Cartographic Journal, 45 (3), pp. 201-215, 2008
[17] F. Giannotti,D. Pedreschi (eds.). , Mobility, Data Mining, and Privacy: Geographic Knowledge Discovery. Springer, 2008.
[18] R. Gueting,M. Schneider., Moving Objects Databases. Morgan Kaufmann, 2005.
[19] M.-J. Kraak., The space-time cube revisited from a geovisualization perspective. In Proceedings of the 21 st International Cartographic Conference, Durban, South-Africa, pp. 1988-1995, Aug. 2003
[20] M.-J. Kraak,F. Ormeling., Cartography: Visualization of Spatial Data. Second edition. Pearson Education Limited, 2003
[21] P. Laube., Progress in movement pattern analysis. In Behaviour Monitoring and Interpretation - BMI - Smart Environments, pp. 43-71, IOS Press, 2009
[22] X. Li, A. Çöltekin, M.-J. Kraak., Visual exploration of eye movement data using the space-time cube. In Proceedings of GIScience 2010, pp. 295-309, Springer, 2010
[23] T. von der Mal sburg,S. Vasishth., What is the scanpath signature of syntactic reanalysis? Journal of Memory and Language, 65(2): 109-127, Aug. 2011
[24] K. Ooms, G. Andrienko, N. Andrienko,P. De, Maeyer,V., Fack. Analysing the spatial dimension of eye movement data using a visual analytic approach. Expert Systems with Applications, v. 39 (1): 1324-1332, 2012
[25] T. Opach,A. Nossum., Evaluating the usability of cartographic animations with eye-movement analysis. In Proceedings of the 25th International Cartographic Conference, Paris, Jul. 2011
[26] D. Phan, L. Xiao, R. Yeh., P. Hanrahan, T. Winograd., Flow map layout. In Proceedings of the IEEE Symposium on Information Visualization (Info Vis 2005), pp. 219-224, Oct. 2005
[27] M. Pohl, M. Schmitt, S. Diehl., Comparing the readability of graph layouts using eye tracking and task-oriented analysis. In O. Deussen,P. Hall (Eds.). , Proceedings of Computational Aesthetics in Graphics, Visualization, and Imaging, pp. 49-56, 2009
[28] A. Poole,L. J. Ball., Eye tracking in human-computer interaction and usability research: current status and future prospects. In C. Ghaoui (Ed.), Encyclopedia of Human-Computer Interaction, pp. 211-219, Idea group, 2006.
[29] C. M. Privitera,L. W. Stark., Algorithms for defining visual regions-of-interest: comparison with eye fixations. , IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9): 970-982, Sept. 2000
[30] 1. Rigoutsos,A. Floratos., Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics, 14(1): 55-67, 1998
[31] J. W. Sammon., A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18(5): 401-409, May 1969
[32] W. Tobler., Experiments in migration mapping by computer. The American Cartographer, 14 (2): 155-163, 1987
[33] N. Willems,H. van de Wetering,J. J. van Wijk., Visualization of vessel movements. Computer Graphics Forum, 28(3): 959-966, Jun. 2009.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool