The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2639-2648
Jian Zhao , Univ. of Toronto, Toronto, ON, Canada
F. Chevalier , Univ. of Toronto, Toronto, ON, Canada
C. Collins , Univ. of Ontario Inst. of Technol., Oshawa, ON, Canada
R. Balakrishnan , Univ. of Toronto, Toronto, ON, Canada
A discourse parser is a natural language processing system which can represent the organization of a document based on a rhetorical structure tree-one of the key data structures enabling applications such as text summarization, question answering and dialogue generation. Computational linguistics researchers currently rely on manually exploring and comparing the discourse structures to get intuitions for improving parsing algorithms. In this paper, we present DAViewer, an interactive visualization system for assisting computational linguistics researchers to explore, compare, evaluate and annotate the results of discourse parsers. An iterative user-centered design process with domain experts was conducted in the development of DAViewer. We report the results of an informal formative study of the system to better understand how the proposed visualization and interaction techniques are used in the real research environment.
tree data structures, computational linguistics, data visualisation, document handling, grammars, interactive systems, iterative methods, natural language processing, iterative user-centered design process, discourse analysis, discourse parser, natural language processing system, document, rhetorical structure tree, data structures, text summarization, question answering, dialogue generation, computational linguistics researchers, DAViewer, parsing algorithms, interactive visualization system, Visualization, Algorithm design and analysis, Data visualization, Prototypes, Computational linguistics, Standards, Image color analysis, interaction techniques, Discourse structure, tree comparison, computational linguisitics, visual analytics
Jian Zhao, F. Chevalier, C. Collins, R. Balakrishnan, "Facilitating Discourse Analysis with Interactive Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2639-2648, Dec. 2012, doi:10.1109/TVCG.2012.226
[1] J. Albrecht, R. Hwa, and G. E. Marai., The Chinese Room: Visualization and Interaction to Understand and Correct Ambiguous Machine Translation Computer Graphics Forum, 28(3): 1047-1054, June 2009.
[2] S. Bremm,T. von Landesberger,, and M. Heb., Interactive visual comparison of multiple trees. In Proc. of the IEEE Symp. on Visual Analytics Science and Technology, pages 29-38, 2011.
[3] C. A. Brewer. Colorbrewer2. http:/, 2009. Accessed March, 2012.
[4] L. Carlson, D. Marcu, and M. E. Okurowski., Building a discourse-tagged corpus in the framework of Rhetorical Structure Theory. In Proc. of the Second SIGdial Workshop on Discourse and Dialogue, pages 1-10, 2001.
[5] J. Y. Chai and R. Jin., Discourse structure for context question answering. In Proc. of HLT-NAACL 2004 Workshop on Pragmatics in Question Answering, pages 23-30, 2004.
[6] F. Chevalier, D. Auber, and A. Telea., Structural analysis and visualization of C++ code evolution using syntax trees. In Ninth Int. Workshop on Principles of Software Evolution: in conjunction with the 6th ESECIFSE Joint Meeting, IWPSE ‘07, pages 90-97, 2007.
[7] C. Collins, S. Carpendale, and G. Penn., Visualization of uncertainty in lattices to support decision-making. In Proc. of Eurographics/IEEE-VGTC Symp. on Visualization, May 2007.
[8] C. Collins, G. Penn, and S. Carpendale, Bubble sets: Revealing set relations with isocontours over existing visualizations IEEE Trans. on Visualization and Computer Graphics (Proc. of the IEEE Symp. on Information Visualization), 15(6), 2009.
[9] C. Culy, V. Lyding, and H. Dittmann., Structured parallel coordinates: a visualization for analyzing structured language data. In Proc. of the Int. Con! on Corpus Linguistics, pages 485-493, 2011.
[10] S. DeNeefe, K. Knight, and H. H. Chan., Interactively exploring a machine translation model. In Proc. of the Annual Meeting of the Assoc. for Computational Linguistics, Poster Session, 2005.
[11] D. A. duVerle and H. Prendinger., A novel discourse parser based on support vector machine classification. In Proc. of the Joint Conf of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing, ACL ‘09, pages 665-673, 2009.
[12] V. W. Feng and G. Hirst., Text-level discourse parsing with rich linguistic features. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 60-68, July 2012.
[13] M. Graham and J. Kennedy, A survey of multiple tree visualisation Information Visualization, 9(4): 235-252, 2010.
[14] P. Green-Armytage., A colour alphabet and the limits of colour coding. Colour: Design and Creativity, 5(10): 1-23, 2010.
[15] H. Hernault, H. Prendinger, D. A. duVerle,, and M. Ishizuka., Hilda: A discourse parser using support vector machine classification. Dialogue and Discourse, 1(3): 1-33, 2010.
[16] J. B. Kruskal and J. M. Landwehr., Icicle plots: Better displays for hierarchical clustering The American Statistician, 37(2): pp. 162-168, 1983.
[17] B. Lee,G. G. Robertson, M. Czerwinski, and C. S. Parr., Candidtree: visualizing structural uncertainty in similar hierarchies Information Visualization, 6(3): 233-246, Dec. 2007.
[18] W. C. Mann and S. A. Thompson., Rhetorical structure theory: Toward a functional theory of text organization Text, 8(3): 243-281, 1988.
[19] D. Marcu., Discourse trees are good indicators of importance in text. In Advances in Automatic Text Summarization, pages 123-136, 1999.
[20] P. McLachlan, T. Munzner, E. Koutsofios,, and S. North., Liverac: interactive visual exploration of system management time-series data. In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, CHI ‘08, pages 1483-1492, 2008.
[21] T. Munzner, F. Guimbretiere, and G. Robertson., Constellation: A visualization tool for linguistic queries from mindnet. In Proceedings of the 1999 IEEE Symposium on Information Visualization, INFOVIS ‘99, pages 132-135, 1999.
[22] T. Munzner,F. Guimbretière, S. Tasiran, L. Zhang,, and Y. Zhou., Treejuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. ACM Trans. on Graphics, 22: 453-462, July 2003.
[23] T. Pilz, W. Luther, and U. Ammon, Retrieval of spelling variants in nonstandard texts – automated support and visualization SKY Journal of Linguistics, 21: 155-200, 2008.
[24] H. Prendinger, P. Piwek, and M. Ishizuka, A novel method for automatically generating multi-modal dialogue from text Int. J. Semantic Computing, 1(3): 319-334, 2007.
[25] R. Rao and S. K. Card., The table lens: Merging graphical and symbolic representations in an interactive focus+context visualization for tabular information. In Proc. of the SIGCHI Conf on Human Factors in Computing Systems (CHI), 1994.
[26] N. H. Riche, B. Lee, and C. Plaisant., Understanding interactive legends: a comparative evaluation with standard widgets Computer Graphics Forum, 29(3): 1193-1202, 2010.
[27] G. Robertson, K. Cameron, M. Czerwinski,, and D. Robbins., Animated visualization of multiple intersecting hierarchies. Information Visualization, 1(1): 50-65, Mar. 2002.
[28] R. Theron, L. F. Fontanillo, A. E. Marcos,, and C. S. Herrero., Visual analytics: A novel approach in corpus linguistics and the Nuevo Diccionario Histórico del Español. In Proc. of III Congreso Intemacional de Lingüística de Corpus, 2011.
[29] Y. Tu and H.- W Shen., Visualizing changes of hierarchical data using treemaps IEEE Transactions on Visualization and Computer Graphics, 13: 1286-1293, November 2007.
[30] F. van Ham, Using multilevel call matrices in large software projects. In Proc. of the IEEE Conf on Information Visualization, INFOVIS’03, pages 227-232, 2003.
39 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool