The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2565-2574
Visualizing trajectory attribute data is challenging because it involves showing the trajectories in their spatio-temporal context as well as the attribute values associated with the individual points of trajectories. Previous work on trajectory visualization addresses selected aspects of this problem, but not all of them. We present a novel approach to visualizing trajectory attribute data. Our solution covers space, time, and attribute values. Based on an analysis of relevant visualization tasks, we designed the visualization solution around the principle of stacking trajectory bands. The core of our approach is a hybrid 2D/3D display. A 2D map serves as a reference for the spatial context, and the trajectories are visualized as stacked 3D trajectory bands along which attribute values are encoded by color. Time is integrated through appropriate ordering of bands and through a dynamic query mechanism that feeds temporally aggregated information to a circular time display. An additional 2D time graph shows temporal information in full detail by stacking 2D trajectory bands. Our solution is equipped with analytical and interactive mechanisms for selecting and ordering of trajectories, and adjusting the color mapping, as well as coordinated highlighting and dedicated 3D navigation. We demonstrate the usefulness of our novel visualization by three examples related to radiation surveillance, traffic analysis, and maritime navigation. User feedback obtained in a small experiment indicates that our hybrid 2D/3D solution can be operated quite well.
solid modelling, cartography, data visualisation, geographic information systems, maritime navigation, stacking-based visualization, trajectory attribute data, spatio-temporal context, trajectory visualization, stacked 3D trajectory band, 2D-3D display, 2D map, spatial context, dynamic query mechanism, 2D time graph, color mapping, 3D navigation, radiation surveillance, traffic analysis, Trajectory, Data visualization, Image color analysis, Navigation, spatio-temporal data, Visualization, interaction, exploratory analysis, trajectory attribute data
C. Tominski, H. Schumann, G. Andrienko, N. Andrienko, "Stacking-Based Visualization of Trajectory Attribute Data", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2565-2574, Dec. 2012, doi:10.1109/TVCG.2012.265
[1] W. Aigner, S. Miksch, H. Schumann,, and C. Tominski., Visualization of Time-Oriented Data. Springer, 2011.
[2] G. Andrienko, N. Andrienko, P. Bak., D. Keim, S. Kisilevich,, and S. Wrobel., A Conceptual Framework and Taxonomy of Techniques for Analyzing Movement. Journal of Visual Languages & Computing, 22(3): 213-232, 2011.
[3] G. Andrienko, N. Andrienko, and M. Heurich, An Event-Based Conceptual Model for Context-Aware Movement Analysis International Journal of Geographical Information Science, 25(9): 1347-1370, 2011.
[4] G. Andrienko, N. Andrienko, C. Hurter., S. Rinzivillo, and S. Wrobel., From Movement Tracks through Events to Places: Extracting and Characterizing Significant Places from Mobility Data. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 161-170. IEEE Computer Society, 2011.
[5] G. L. Andrienko and N. V. Andrienko., Poster: Dynamic Time Transformation for Interpreting Clusters of Trajectories with Space-Time Cube. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 213-214. IEEE Computer Society, 2010.
[6] G. L. Andrienko,N. V. Andrienko, U. Demsar, D. Dransch., J. Dykes, S. I. Fabrikant, M. Jern, M.-J. Kraak, H. Schumann, and C. Tominski., Space, Time and Visual Analytics International Journal of Geographical Information Science, 24(10): 1577-1600, 2010.
[7] N. Andrienko and G. Andrienko., Exploratory Analysis of Spatial and Temporal Data. Springer, 2006.
[8] L. D. Bergman,B. E. Rogowitz,, and L. Treinish., A Rule-Based Tool for Assisting Colormap Selection. In Proceedings of the IEEE Visualization Conference (Vis), pages 118-125. IEEE Computer Society, 1995.
[9] J. Bertin., Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, 1983. translated by William J. Berg.
[10] T. Crnovrsanin, C. Muelder, C. D. Correa,, and K.-L. Ma., Proximity-Based Visualization of Movement Trace Data. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 11-18. IEEE Computer Society, 2009.
[11] N. Elmqvist and P. Tsigas, A Taxonomy of 3D Occlusion Management for Visualization IEEE Transactions on Visualization and Computer Graphics, 14(5): 1095-1109, 2008.
[12] F. Giannotti and D. Pedreschi, editors. , Mobility, Data Mining and Privacy –Geographic Knowledge Discovery. Springer, 2008.
[13] J. Gudmundsson, P. Laube, and T. Wolle., Computational Movement Analysis. In W. Kresse, and D. M. Danko, editors, , Springer Handbook of Geographic Information, pages 423-438. Springer, 2012.
[14] M. A. Harrower and C. A. Brewer., An Online Tool for Selecting Color Schemes for Maps The Cartographic Journal, 40(1): 27-37, 2003.
[15] J. Heer, N. Kong, and M. Agrawala., Sizing the Horizon: The Effects of Chart Size and Layering on the Graphical Perception of Time Series Visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 1303-1312. ACM, 2009.
[16] G. F. Jenks and F. C. Caspall., Error on Choroplethic Maps: Definition, Measurement, Reduction. Annals of the Association of American Geographers, 61(2): 217-244, 1971.
[17] T. Kapler and W. Wright, GeoTime Information Visualization Information Visualization, 4(2): 136-146, 2005.
[18] R. Kincaid and H. Lam., Line Graph Explorer: Scalable Display of Line Graphs Using Focus+Context, In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), pages 404-411. ACM, 2006.
[19] A. Kjellin,L. W. Pettersson, S. Seipel, and M. Lind, Evaluating 2D and 3D Visualizations of Spatiotemporal Information ACM Transactions on Applied Perception, 7(3): 19:1-19:23, 2008.
[20] M.-J. Kraak., The Space-Time Cube Revisited from a Geovisualization Perspective. In Proceedings of the 21 st International Cartographic Conference (ICC), pages 1988-1995. The International Cartographic Association (ICA), 2003.
[21] M.-J. Kraak and O. Huisman., Beyond Exploratory Visualization of Space-Time Paths. In H. J. Miller, and J. Han, editors, , Geographic Data Mining and Knowledge Discovery, pages 431-443. Taylor & Francis, 2nd edition, 2009.
[22] H. Liu, Y. Gao, L. Lu., S. Liu, H. Qu,, and L. Ni., Visual Analysis of Route Diversity. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 171-180. IEEE Computer Society, 2011.
[23] A. M, MacEachren Some Truth With Maps: A Primer on Symbolization and Design. Association of American Geographers, 1994.
[24] K. Matković, D. Gracanin, Z. Konyha,, and H. Hauser., Color Lines View: An Approach to Visualization of Families of Function Graphs. In Proceedings of the International Conference Information Visualisation (IV), pages 59-64. IEEE Computer Society, 2007.
[25] D. T. Nhon, L. Wilkinson, and A. Anand., Stacking Graphic Elements to Avoid Over-Plotting IEEE Transactions on Visualization and Computer Graphics, 16(6): 1044-1052, 2010.
[26] OpenStreetMap Contributors. Open Street Map., accessed July, 2012.
[27] M. Piorkowski,N. Sarafijanovic-Djukic,, and M. Gross-glauser. CRAWDAD data set epfl/mobility (v. 2009–02-24). retrieved March, 2012.
[28] S. Rinzivillo, D. Pedreschi, M. Nanni., F. Giannotti, N. Andrienko,, and G. Andrienko., Visually Driven Analysis of Movement Data by Progressive Clustering. Information Visualization, 7(3-4): 225-239, 2008.
[29] A. H. Robinson., The Thematic Maps of Charles Joseph Minard Imago Mundi, 21: 95-108, 1967.
[30] T. Saito,H. N. Miyamura, M. Yamamoto, H. Saito., Y. Hoshiya, and T. Kaseda., Two-Tone Pseudo Coloring: Compact Visualization for One-Dimensional Data. In Proceedings of the IEEE Symposium on Information Visualization (Info Vis), pages 173-180. IEEE Computer Society, 2005.
[31] B. Shneiderman., Why Not Make Interfaces Better Than 3D Reality? Computer Graphics and Applications, 23(6): 12-15, 2003.
[32] T. A. Slocum,R. B. MacMaster,F. C. Kessler,, and H. H. Howard, Thematic Cartography and Geovisualization. Pearson Education, 3rd edition, 2009.
[33] D. Spretke, P. Bak, H. Janetzko., B. Kranstauber, F. Mansmann,, and S. Davidson., Exploration Through Enrichment: A Visual Analytics Approach for Animal Movement. In I. F. Cruz, D. Agrawal, C. S. Jensen, E. Ofek, and E. Tanin, editors, Proceedings of the ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (ACM GIS), pages 421-424. ACM, 2011.
[34] C. Tominski, H. Schumann, G. Andrienko,, and N. Andrienko., Stacking-Based Visualizaion of Trajectory Attribute Data. http://goo.glwIC1k,accessed July, 2012.
[35] C. Ware, R. Arsenault, M. Plumlee,, and D. Wiley., Visualizing the Un-derwater Behavior of Humpback Whales. IEEE Computer Graphics and Applications, 26(4): 14-18, 2006.
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool