The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2364-2371
D. Jonsson , Linkoping Univ., Linkoping, Sweden
J. Kronander , Linkoping Univ., Linkoping, Sweden
T. Ropinski , Linkoping Univ., Linkoping, Sweden
A. Ynnerman , Linkoping Univ., Linkoping, Sweden
In this paper, we enable interactive volumetric global illumination by extending photon mapping techniques to handle interactive transfer function (TF) and material editing in the context of volume rendering. We propose novel algorithms and data structures for finding and evaluating parts of a scene affected by these parameter changes, and thus support efficient updates of the photon map. In direct volume rendering (DVR) the ability to explore volume data using parameter changes, such as editable TFs, is of key importance. Advanced global illumination techniques are in most cases computationally too expensive, as they prevent the desired interactivity. Our technique decreases the amount of computation caused by parameter changes, by introducing Historygrams which allow us to efficiently reuse previously computed photon media interactions. Along the viewing rays, we utilize properties of the light transport equations to subdivide a view-ray into segments and independently update them when invalid. Unlike segments of a view-ray, photon scattering events within the volumetric medium needs to be sequentially updated. Using our Historygram approach, we can identify the first invalid photon interaction caused by a property change, and thus reuse all valid photon interactions. Combining these two novel concepts, supports interactive editing of parameters when using volumetric photon mapping in the context of DVR. As a consequence, we can handle arbitrarily shaped and positioned light sources, arbitrary phase functions, bidirectional reflectance distribution functions and multiple scattering which has previously not been possible in interactive DVR.
rendering (computer graphics), interactive systems, lighting, bidirectional reflectance distribution functions, historygram approach, direct volume rendering, photon mapping techniques, interactive volumetric global illumination, interactive transfer function, TF, material editing, DVR, advanced global illumination techniques, parameter change, photon media interactions, light transport equations, view-ray, photon scattering events, property change, light sources, arbitrary phase functions, Photonics, Lighting, Rendering (computer graphics), Scattering, Volume measurement, participating media, Volume rendering, photon mapping, global illumination
D. Jonsson, J. Kronander, T. Ropinski, A. Ynnerman, "Historygrams: Enabling Interactive Global Illumination in Direct Volume Rendering using Photon Mapping", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2364-2371, Dec. 2012, doi:10.1109/TVCG.2012.232
[1] D. A. Alcantara, Efficient Hash Table on the GPU. PhD thesis, University of California, Davis, California, USA, 2011.
[2] M. Ashikhmin and P. Shirley, An anisotropic phong brdf model Journal of Graphics Tools, 5: 25-32, 2000.
[3] U. Behrens and R. Ratering., Adding shadows to a texture-based volume renderer. In IEEE Symposium on Volume Visualization, pages 39-46, 1998.
[4] E. Cerezo, F. Perez, X. Pueyo., F. Seron, and F. Sillion, A survey on participating media rendering techniques The Visual Computer, 21(5): 303328, 2005.
[5] M. Z. Claude Knaus., Progressive photon mapping: A probabilistic ap-proach ACM Transactions on Graphics (Proceedings of SIGGRAPH 20011), 30(3), 2011.
[6] K. Dmitriev, S. Brabec, K. Myszkowski,, and H.-P. Seidel., Interactive global illumination using selective photon tracing. In Proc. EGSR, pages 25-36, 2002.
[7] T. Engelhardt and C. Dachsbacher., Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Symposium on Interactive 3D Graphics and Games, I3D ‘10, pages 119-125. ACM, 2010.
[8] A. L. Gilchrist., The perception of surface blacks and whites Scientific American, 240(3), 1979.
[9] T. Hachisuka, S. Ogaki, and H. W. Jensen., Progressive photon mapping ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2008), pages 130:1-130:8, 2008.
[10] M. Hadwiger, A. Kratz, C. Sigg,, and K. Bühler., Gpu-accelerated deep shadow maps for direct volume rendering. In Graphics hardware, 2006.
[11] F. Hernell, P. Ljung, and A. Ynnerman, Local Ambient Occlusion in Direct Volume Rendering IEEE Transactions on Visualization and Computer Graphics, 16(4): 548-559, 2010.
[12] W. Jarosz, D. Nowrouzezahrai, I. Sadeghi,, and H. W. Jensen., A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011), 30(1): 5:1-5: 19, Jan. 2011.
[13] W. Jarosz, M. Zwicker, and H. W. Jensen., The beam radiance estimate for volumetric photon mapping Computer Graphics Forum (Proceedings of Eurographics 2008), 27(2): 557-566, Apr. 2008.
[14] H. W. Jensen., Global illumination using photon maps. In Rendering Techniques, pages 21-30. Springer-Verlag, 1996.
[15] H. W. Jensen and P. H. Christensen., Efficient simulation of light transport in scences with participating media using photon maps. In Proceedings of SIG GRA PH 1998, SIGGRAPH ‘98, pages 311-320. ACM, 1998.
[16] D. Jonsson, E. Sunden, A. Ynnerman,, and T. Ropinski., Interactive Volume Rendering with Volumetric Illumination. Eurographics STAR 2012, 31, 2012.
[17] D. Kersten and A. Hurlbert, Discounting the color of mutual illumination: A 3d shape-induced color phenomenon Investigative Ophthalmology and Visual Science, 32(3), 1996.
[18] J. Kniss, S. Premoze, C. Hansen., P. Shirley, and A. McPherson, A model for volume lighting and modeling IEEE Transactions on Visualization and Computer Graphics, 9(2): 150-162, 2003.
[19] T. Kroes,F. H. Post,, and C. P. Botha., Exposure render: An interactive photo-realistic volume rendering framework. PLoS ONE, 2012. Ac-cepted, to appear.
[20] J. Kronander, D. Jonsson, J. Low., P. Ljung, A. Ynnerman,, and J. Unger., Efficient visibility encoding for dynamic illumination in direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 18(3): 447-462, 2012.
[21] M. Langer and H. Btilthoff, Depth discrimination from shading under diffuse lighting Perception, 29: 649-660, 2000.
[22] F. Lindemann and T. Ropinski., Advanced light material interaction for direct volume rendering. In IEEEIEG Int. Symp. on Volume Graphics, pages 101-108, 2010.
[23] F. Lindemann and T. Ropinski, About the Influence of Illumination Models on Image Comprehension in Direct Volume Rendering IEEE TVCG(Vis Proceedings), 17(12): 1922-1931, 2011.
[24] J. Low, J. Kronander, A. Ynnerman,, and J. Unger., Brdf models for ac-curate and efficient rendering of glossy surfaces. ACM Trans. Graph., 31(1): 9:1-9:14, Feb. 2012.
[25] N. Max, Optical models for direct volume rendering IEEE Transactions on Visualization and Computer Graphics, 1(2): 99-108, 1995.
[26] D. Merrill and A. Grimshaw, High Performance and Scalable Radix Sorting: A case study of implementing dynamic parallelism for GPU computing Parallel Processing Letters, 21(02): 245-272, 2011.
[27] T. Ritschel, T. Grosch, C. Dachsbacher,, and J. Kautz., State of the art in interactive global illumination. Computer Graphics Forum, 31 (31): 160-188, 2012.
[28] T. Ropinski, C. Doring, and C. Rezk, Salama. Advanced Volume Illumination with Unconstrained Light Source Positioning. IEEE Computer Graphics and Applications, 2010.
[29] T. Ropinski, C. Doring, and C. Salama., Interactive volumetric lighting simulating scattering and shadowing. In Pacific Vis (IEEE Pacific Visual-ization), 2010.
[30] T. Ropinski,J. Meyer-Spradow, S. Diepenbrock, J. Mensmann,, and K. Hinrichs., Interactive volume rendering with dynamic ambient occlusion and color bleeding. Computer Graphics Forum (Proceedings of Eurographics 2008), 27(2): 567-576, 2008.
[31] C. Salama., Gpu-based monte-carlo volume raycasting. In Pacific Conference on Computer Graphics and Applications, pages 411-414, 2007.
[32] M. Schott, V. Pegoraro, C. Hansen., K. Boulanger, and K. Bouatouch, A directional occlusion shading model for interactive direct volume rendering Computer Graphics Forum (Proceedings of EGIIEEE Symposium on Visualization 2009), 28(3): 855-862, 2009.
[33] E. Sunden, A. Ynnerman, and T. Ropinski, Image plane sweep volume illumination IEEE Transactions on Visualization and Computer Graphics, 17(12): 2125-2134, 2011.
[34] V. Solteszova, D. Patel, S. Bruckner,, and I. Viola., A multidirectional occlusion shading model for direct volume rendering. Computer Graphics Forum (Eurographics/IEEE VGTC Symp. on Visualization 2010), 29(3): 883-891, 2010.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool