The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2305-2314
Steven Schlegel , University of Leipzig
Nico Korn , Helmholtz-Centre Dresden-Rossendorf
Gerik Scheuermann , University of Leipzig
In many fields of science or engineering, we are confronted with uncertain data. For that reason, the visualization of uncertainty received a lot of attention, especially in recent years. In the majority of cases, Gaussian distributions are used to describe uncertain behavior, because they are able to model many phenomena encountered in science. Therefore, in most applications uncertain data is (or is assumed to be) Gaussian distributed. If such uncertain data is given on fixed positions, the question of interpolation arises for many visualization approaches. In this paper, we analyze the effects of the usual linear interpolation schemes for visualization of Gaussian distributed data. In addition, we demonstrate that methods known in geostatistics and machine learning have favorable properties for visualization purposes in this case.
Interpolation, Gaussian processes, Data visualization, Uncertainty, Distributed databases, Random variables, Data models, interpolation, Gaussian process, uncertainty
Steven Schlegel, Nico Korn, Gerik Scheuermann, "On the Interpolation of Data with Normally Distributed Uncertainty for Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2305-2314, Dec. 2012, doi:10.1109/TVCG.2012.249
[1] R. Adler and J. Taylor., Topological complexity of smooth randomfunctions: Ecole d'Ete de Probabilités de Saint-Flour XXXIX - 2009. Lecture Notes in Mathematics. Springer, 2011.
[2] R. J. Adler and J. E., Taylor Random Fields and Geometry (Springer Monographs in Mathematics). Springer, June 2007.
[3] N. Aronszajn, Theory of reproducing kernels Transactions of the American Mathematical Society, 68, 1950.
[4] N. Cressie, The origins of kriging Mathematical Geology, 22(3): 239252, Apr. 1990.
[5] S. Djurcilov, K. Kim, P. Lermusiaux,, and A. Pang., Visualizing scalar volumetric data with uncertainty. Computers & Graphics, 26(2): 239248, Apr. 2002.
[6] M. N. Gibbs and D. J. C. MacKay., Efficient implementation of gaussian processes. submitted to Statistics and Computing.
[7] M. Hlawatsch, P. Leube, W. Nowak,, and D. Weiskopf., Flow radar glyphs; static visualization of unsteady flow with uncertainty. Visualization and Computer Graphics, IEEE Transactions on, 17(12): 1949-1958, 2011.
[8] Intergovernmental. Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA, Sept. 2007.
[9] J. M. Kniss,R. Van Uitert, A. Stephens, G. S. Li, T. Tasdizen, and C. Hansen., Statistically quantitative volume visualization. pages 287294, Oct. 2005.
[10] D. G. Krige., A statistical approach to some basic mine valuation problems on the witwatersrand Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6): 119-139, 1951.
[11] H. Li, C.-W. Fu, Y. Li,, and A. J. Hanson., Visualizing large-scale uncertainty in astrophysical data. Visualization and Computer Graphics, IEEE Transactions on, 13(6): 1640-1647, Nov. 2007.
[12] A. Lopes and K. Brodlie., Accuracy in 3d particle tracing. In In HansChristian Hege and Konrad Poltheir; editors, Mathematical Visualization, pages 329-341, 1998.
[13] K. E. Lowell and P. Casault., Outside-in, inside-out: Two methods of generating spatial certainty maps. In University of Otago, pages 26-29, 1997.
[14] D. J. C. MacKay., Introduction to Gaussian processes. In C. M. Bishop, editor, , Neural Networks and Machine Learning, NATO ASI Series, pages 133-166. Kluwer, 1998.
[15] M. Monteiro da Rocha and J. K. Yamamoto., Comparison between kriging variance and interpolation variance as uncertainty measurements in the capanema iron mine, state of minas geraisbrazil. Natural Resources Research, 9: 223-235, 2000. 10.1023/A: 1010195701968.
[16] M. Pauly, N. Mitra, and L. Guibas., Uncertainty and variability in point cloud surface data, 2004.
[17] T. Pfaffelmoser, M. Reitinger, and R. Westermann., Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. In Computer Graphics Forum, 30, pages 951-960. Wiley Online Library, 2011.
[18] K. Pöthkow and H.-C. Hege., Positional uncertainty of isocontours: Con-dition analysis and probabilistic measures. IEEE Transactions on Visualization and Computer Graphics, 17(10): 1393-1406, 2011.
[19] K. Pothkow, B. Weber, and H.-C. Hege, Probabilistic marching cubes Computer Graphics Forum, 30(3): 931-940, 2011.
[20] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.
[21] G. Scheuermann, M. Hlawitschka, C. Garth,, and H. Hagen., Mathematical foundations of uncertain field visualization. submitted to Dagstuhl Follow Ups, Workshop on Scientific Visualization, Seminar 11231, 2011.
[22] T. Strothotte, M. Masuch, and T. Isenberg, Visualizing knowledge about virtual reconstructions of ancient architecture Computer Graphics International Conference, 0: 36-43, 1999.
[23] C. Wittenbrink, E. Saxon, J. J. Furman, A. Pang, and S. Lodha., Glyphs for visualizing uncertainty in environmental vector fields. In IEEE Transactions on Visualization and Computer Graphics, 2410, pages 266-279, 1995.
[24] J. Yamamoto, An alternative measure of the reliability of ordinary kriging estimates Mathematical Geology, 32: 489-509, 2000. 10.1023/A: 1007577916868.
[25] J. Yin,S. H. Ng,, and K. M. Ng., A study on the effects of parameter estimation on kriging model's prediction error in stochastic simulations. In Winter Simulation Conference, WSC ‘09, pages 674-685. Winter Simulation Conference, 2009.
[26] B. Zehner, N. Watanabe, and O. Kolditz, Visualization of gridded scalar data with uncertainty in geosciences Computers and Geosciences, 36(10): 1268-1275, 2010.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool