The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2236-2244
A. Wiebel , Zuse Inst. Berlin (ZIB), Berlin, Germany
F. M. Vos , Tech. Univ. Delft & AMC Amsterdam, Delft, Netherlands
D. Foerster , Zuse Inst. Berlin (ZIB), Berlin, Germany
H. Hege , Zuse Inst. Berlin (ZIB), Berlin, Germany
Scientists, engineers and physicians are used to analyze 3D data with slice-based visualizations. Radiologists for example are trained to read slices of medical imaging data. Despite the numerous examples of sophisticated 3D rendering techniques, domain experts, who still prefer slice-based visualization do not consider these to be very useful. Since 3D renderings have the advantage of providing an overview at a glance, while 2D depictions better serve detailed analyses, it is of general interest to better combine these methods. Recently there have been attempts to bridge this gap between 2D and 3D renderings. These attempts include specialized techniques for volume picking in medical imaging data that result in repositioning slices. In this paper, we present a new volume picking technique called WYSIWYP (“what you see is what you pick”) that, in contrast to previous work, does not require pre-segmented data or metadata and thus is more generally applicable. The positions picked by our method are solely based on the data itself, the transfer function, and the way the volumetric rendering is perceived by the user. To demonstrate the utility of the proposed method, we apply it to automated positioning of slices in volumetric scalar fields from various application areas. Finally, we present results of a user study in which 3D locations selected by users are compared to those resulting from WYSIWYP. The user study confirms our claim that the resulting positions correlate well with those perceived by the user.
rendering (computer graphics), data analysis, data visualisation, medical image processing, radiology, what you see is what you pick, 3D data analysis, slice-based visualizations, radiologists, medical imaging data, 3D rendering, volume picking, WYSIWYP, Rendering (computer graphics), Transfer functions, Equations, Image color analysis, Biomedical imaging, Data visualization, Geometry, WYSIWYG, Picking, volume rendering
A. Wiebel, F. M. Vos, D. Foerster, H. Hege, "WYSIWYP: What You See Is What You Pick", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2236-2244, Dec. 2012, doi:10.1109/TVCG.2012.292
[1] M. Agus, E. Gobbetti, J. Iglesias Guitián, F. Marton, and G. Pintore, GPU accelerated direct volume rendering on an interactive light field dis-play Computer Graphics Forum (EUROGRAPHICS 2008), 27(3): 231-240, 2008.
[2] F. Argelaguet and C. Andujar, Efficient 3d pointing selection in clut-tered virtual environments IEEE Computer Graphics & Applications, 29(6): 34-43, Nov. 2009.
[3] Avizo - the 3D analysis software for scientific and industrial data. last visited 2011–09-21.
[4] W. D Bidgood and S. C. Horii., Introduction to the ACR-NEMA DICOM standard Radiographies a review publication of the Radiological Society of North America Inc, 12(2): 345-355, 1992.
[5] U. D. Bordoloi and H.-W. Shen., View selection for volume rendering. In IEEE Visualization 2005. pages 487-494. IEEE Comnuter Society, 2005.
[6] S. Bruckner, P. Kohlmann, A. Kanitsar,, and M. E. Gröller,Integrating volume visualization techniques into medical applications. In Proceedings of 5th IEEE International Symposium on Biomedical Imaging: From Nann to Macro. naces 820–823, May 2008.
[7] S. Bruckner,V. Åoltészová,E. Gröller,J. Hladůvka,K. Bühler, J. Yu, and B. Dickson., Braingazer - visual queries for neurobiology research. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1497-1504, Nov. 2009.
[8] C. D. Correa and K.-L. Ma., Visibility-driven transfer functions. In Proceedings of the 2009 IEEE Pacific Visualization Symposium, PACI-FICVIS ‘09, pages 177-184, Washington, DC, USA, 2009. IEEE Computer Society.
[9] R. A. Drebin, L. Carpenter, and P. Hanrahan., Volume rendering. SIG-GRAPH Comput. Graph., 22(4): 65-74, June 1988.
[10] K. Engel, M. Hadwiger, J. Kniss,C. Rezk-Salama,, and D. Weiskopf., Real- Time Volume Graphics. AK Peters, 2006.
[11] E. Gobbetti, P. Pili, A. Zorcolo,, and M. Tuveri., Interactive virtual an-gioscopy. In Proc. of the conference on Visualization ‘98, VIS ‘98, pages 435-438, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.
[12] C. G Healey and J. T. Enns., Attention and visual memory in visualization and computer graphics IEEE Transactions on Visualization and Computer Graphics, 18(7): 1170-1188, 2011.
[13] P. Kohlmann, S. Bruckner, A. Kanitsar,, and M. E. Groller,LiveSync: Deformed viewing spheres for knowledge-based navigation. IEEE Trans. on Visualization and Computer Graphics, 13(6): 1544-1551, Oct. 2007.
[14] P. Kohlmann, S. Bruckner, A. Kanitsar,, and M. E. Gröller., LiveSync++: Enhancements of an interaction metaphor. In Proceedings of Graphics Interface 2008, pages 81-88. Canadian Information Processing Society, May 2008.
[15] P. Kohlmann, S. Bruckner, A. Kanitsar,, and M. E. Gröller,Contextual picking of volumetric structures. In H.-W. S. Peter Eades, Thomas Ertl, editor, Proceedings of the IEEE Pacific Visualization Symposium 2009, pages 185-192. IEEE Computer Society, May 2009.
[16] J. Krüger, and R. Westermann., Acceleration techniques for GPU-based volume rendering. In Proceedings of the 14th IEEE Visualization 2003 (VIS‘03), VIS ‘03, pages 287-292, Washington, DC, USA, 2003. IEEE Computer Society.
[17] H. J, Lugt Introduction to Vortex Theory. Vortex Flow Press, Inc., Po-tomac, Maryland, 1996.
[18] M. M. Malik, T. Moller, and E. Gröller,Feature peeling. In Proceedings of Graphics Interface 2007, pages 273-280. A K Peters Ltd, May 2007.
[19] D. Marr., Vision: A Computational Investigation into the Human Repre-sentation and Processing of Visual Information. W. H. Freeman,1982.
[20] D. Marr and E. Hildreth, Theory of edge detection Proceedings of the Royal Society of London. Series B. Biological Sciences, 207(1167): 187-217, 1980.
[21] N. Max, Optical models for direct volume rendering IEEE Transactions on Visualization and Computer Graphics, 1: 99-108, 1995.
[22] J. Meyer-Spradow, T. Ropinski, J. Mensmann,, and K. H. Hinrichs., Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Computer Graphics and Applications, 29(6): 6-13, Nov./Dec. 2009.
[23] Y. Mori, S. Takahashi, T. Igarashi, Y. Takeshima, and I. Fujishiro., Automatic cross-sectioning based on topological volume skeletonization. In A. Butz, B. Fisher, A. Kruger,, and P. Olivier, editors, Smart Graphics, 3638 of Lecture Notes in Computer Science, pages 924-924. Springer Berlin / Heidelberg, 2005.
[24] , MeVisLab - development environment for medical image processing and visualization., last visited 2011–09- 21.
[25] VTK/New CellPicker - for vtkVolume objects. http://www.vtk.orglWikiVTKlNew_CellPicker, last visited 2011–09-21.
[26] S. Owada, F. Nielsen, and T. Igarashi., Volume catcher. In Proceedings of the 2005 symposium on Interactive 3D graphics and games, I3D ‘05, pages 111-116, New York, NY, USA, 2005. ACM.
[27] H. Peng, Z. Ruan, F. Long,J. H. Myers,, and E. W. Myers., V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotech, 28(4): 348-353, 2010.
[28] B. Preim and D. Bartz., Visualization in Medicine. Morgan Kaufman, 2007.
[29] C. Rezk-Salama and A. Kolb., Opacity peeling for direct volume rendering. Computer Graphics Forum, 25(3): 597-606, 2006.
[30] P. Sabella, A rendering algorithm for visualizing 3D scalar fields SIGGRAPH Comput. Graph., 22: 51-58, June 1988.
[31] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. Prentice Hall, 2nd edition, 1998.
[32] A. Squillacote, The ParaView Guide. Kitware, Inc., 3rd edition, 2008.
[33] D. Stalling, M. Westerhoff, and H.-C. Hege., Amira: A highly interactive system for visual data analysis. In C. D. Hansen, and C. R. Johnson, editors, , The Visualization Handbook, pages 749-767. Elsevier, 2005.
[34] K. D. Toennies and C. Derz., Volume rendering for interactive 3-d segmentation. In Proceedings of the SPIE (Medical Imaging 1997), 3031, pages 602-609, 1997.
[35] M. Tory and T. Möller., Human factors in visualization research. IEEE Transctions on Visualization and Computer Graphics, 10(1): 72-84, January 2004.
[36] J. van Scheltinga, M. Bosma, J. Smit,, and S. Lobregt., Image quality improvements in volume rendering. In Visualization in Biomedical Com-puting, pages 87-92. Springer, 1996.
[37] J. Vlietinck., Picking on fused 3D volume rendered images and updating corresponding views according to a picking action, 2008. Patent No EP1923840A 2.
[38] Y. Wang, J. Zhang, W. Chen, H. Zhang, and X. Chi, Efficient opacity specification based on feature visibilities in direct volume rendering Computer Graphics Forum (Pacific Graphics 2011), 30(7): 2117-2126, 2011.
[39] A. Wiebel,F. M. Vos,, and H.-C. Hege., Perception-oriented picking of structures in direct volumetric renderings. Technical Report 11–45, ZIB, Takustr. 7, 14195 Berlin, 2011.
[40] L. Yu, K. Efstathiou, P. Isenberg,, and T. Isenberg., Efficient structure-aware selection techniques for 3D point cloud visualizations with 2DOF input. IEEE Transactions on Visualization and Computer Graphics (Proceedings Scientific Visualization / Information Visualization 2012), 18(12), Dec. 2012. In this issue.
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool