The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2216-2225
Andrea Unger , GFZ German Reserach Center For Geosciences, Potsdam, Germany
Sven Schulte , Magdeburg-Stendal University of Applied Sciences, Germany
Volker Klemann , National Oceanography Centre, Liverpool, UK
Doris Dransch , GFZ German Reserach Center For Geosciences, Potsdam, Germany
Geoscientific modeling and simulation helps to improve our understanding of the complex Earth system. During the modeling process, validation of the geoscientific model is an essential step. In validation, it is determined whether the model output shows sufficient agreement with observation data. Measures for this agreement are called goodness of fit. In the geosciences, analyzing the goodness of fit is challenging due to its manifold dependencies: 1) The goodness of fit depends on the model parameterization, whose precise values are not known. 2) The goodness of fit varies in space and time due to the spatio-temporal dimension of geoscientific models. 3) The significance of the goodness of fit is affected by resolution and preciseness of available observational data. 4) The correlation between goodness of fit and underlying modeled and observed values is ambiguous. In this paper, we introduce a visual analysis concept that targets these challenges in the validation of geoscientific models - specifically focusing on applications where observation data is sparse, unevenly distributed in space and time, and imprecise, which hinders a rigorous analytical approach. Our concept, developed in close cooperation with Earth system modelers, addresses the four challenges by four tailored visualization components. The tight linking of these components supports a twofold interactive drill-down in model parameter space and in the set of data samples, which facilitates the exploration of the numerous dependencies of the goodness of fit. We exemplify our visualization concept for geoscientific modeling of glacial isostatic adjustments in the last 100,000 years, validated against sea levels indicators - a prominent example for sparse and imprecise observation data. An initial use case and feedback from Earth system modelers indicate that our visualization concept is a valuable complement to the range of validation methods.
Analytical models, Data models, Geophysical measurements, Data visualization, Sea level, Computational modeling, sea level indicators, Earth science visualization, model validation, coordinated multiple views, spatio-temporal visualization
Andrea Unger, Sven Schulte, Volker Klemann, Doris Dransch, "A Visual Analysis Concept for the Validation of Geoscientific Simulation Models", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2216-2225, Dec. 2012, doi:10.1109/TVCG.2012.190
[1] J. Ahrens, K. Heitmann, M. Petersen, J. Woodring, S. Williams, P. Fasel, C. Ahrens, C.-H. Hsu, and B. Geveci, Verifying Scientific Simulations via Comparative and Quantitative Visualization IEEE Computer Graphics and Applications, 30: 16-28, 2010.
[2] W. Aigner, S. Miksch, H. Schumann,, and C. Tominski., Visualization of Time-Oriented Data. Springer, 2011.
[3] G. Andrienko, N. Adrienko, M. Mladenov, M. Mock, and C. Politz, Iden-tifying Place Histories from Activity Traces with an Eye to Parameter Impact IEEE Transactions on Visualization and Computer Graphics, 18(5): 675-688, 2012.
[4] G. Andrienko, N. Andrienko, U. Demsar, D. Dransch, J. Dykes,S. I. Fab-rikant, M. Jern, M.-J. Kraak, H. Schumann, and C. Tominski, Space, time and visual analytics International Journal of Geographical Information Science, 24(10): 1577-1600, 2010.
[5] N. Andrienko and G. Andrienko., Exploratory Analysis of Spatial and Temporal Data - A Systematic Approach. Springer, 2006.
[6] o. Balci., Verification, validation, and accreditation. In WSC ‘98: Proceedings of the 30th conference on Winter simulation, pages 41-4, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.
[7] W. Berger, H. Piringer, P. Filzmoser,, and E. Gröller,Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Published in Computer Graphics Forum, 30(3): pp. 911-920, 2011. Best Paper Award.
[8] F. Boschetti, C. Wijns, and L. Moresi., Effective exploration and visualization of geological parameter space. Geochemistry Geophysics Geosys-tems, 4: 1086-1096, 2003.
[9] S. Bruckner and T. Möller., Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1468-1476, 2010.
[10] W. Chung, H. Chen, L. G. Chaboya,C. D. O’Toole,, and H. Atabakhsh., Evaluating event visualization: a usability study of COPLINK spatio-temporal visualizer. International Journal of Human-Computer Studies, 62(1): 127-157, 2005.
[11] D. Dransch,P. Köthur, S. Schulte, V. Klemann,, and H. Dobslaw., Assessing the quality of geoscientific simulation models with visual analytics methods - a design study. International Journal of Geographical Information Science, 24(10): 1459-1479, 2010.
[12] J. Dykes, A. MacEachren, and M.-J. Kraak., Exploring Geovisualization. International Cartozranhic Association. 2005.
[13] N. Franken., Visual exploration of algorithm parameter space. In Evolutionary Computation, 2009. CEC ‘09. IEEE Congress on, pages 389-398, 2009.
[14] J. Kehrer, F. Ladstadter, P. Muigg, H. Doleisch, A. Steiner,, and H. Hauser., Hypothesis Generation in Climate Research with Interactive Visual Data Exploration. IEEE Transactions on Visualization and Computer Graphics, 14(6): 1579-1586, 2008.
[15] J. Kehrer, P. Muigg, H. Doleisch,, and H. Hauser., Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface. IEEE Transactions on Visualization and Computer Graphics. 17(7): 9340-0946, 2011.
[16] V. Klemann and D. Wolf, Using Fuzzy Logic for the Analysis of Sea-level Indicators with Respect to Glacial-isostatic Adjustment: An Application to the Richmond-Gulf Region, Hudson Bay Pure and Applied Geophysics, 164: 683-696, 2007.
[17] A. Köhler, M. Ohrnberger, and F. Scherbaum, Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields Computers and Geosciences. 35(9): 1757-1767, 2009.
[18] F. Ladstädter,A. K. Steiner,B. C. Lackner, B. Pirscher, G. Kirchengast, J. Kehrer, H. Hauser, P. Muigg, and H. Doleisch, Exploration of Climate Data Using Interactive Visualization Journal of Atmospheric and Oceanic Technology, 27(4): 667-679, 2010.
[19] K. Lambeck, C. Smither, and P. Johnston, Sea-level change, glacial re-bound and mantle viscosity for northern Europe Geophysical Journal International. 134: 102-144, 1998.
[20] D. R Legates and G. J. McCabe Jr., Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation Water Resources Research. 35: 233-241, 1999.
[21] D. R Lehmann., Validity and Goodness of Fit in Data Analysis Advances in Consumer Research, 2: 741-750, 1975.
[22] A. M, MacEachren How Maps Work: Representation, Visualization, and Design. The Guilford Press, 1995.
[23] K. Matkovic, D. Gracanin, M. Jelovic, A. Ammer, A. Lez,, and H. Hauser., Interactive Visual Analysis of Multiple Simulation Runs Using the Simulation Model View: Understanding and Tuning of an Electronic Unit Injector. IEEE Transactions on Visualization and Computer Graphics, 16: 1449-1457, 2010.
[24] K. Matkovic, D. Gracanin, M. Jelovic,, and H. Hauser., Interactive Visual Steering - Rapid Visual Prototyping of a Common Rail Injection System. IEEE Transactions on Visualization and Computer Graphics, 14(6): 1699-1706, 2008.
[25] T. Nocke, M. Flechsig, and U. Bohm., Visual exploration and evaluation of climate-related simulation data. In Proc. of the 2007 Winter Simulation Conference, pages 703-711, 2007.
[26] H. Piringer, W. Berger, and J. Krasser, HyperMoVal: Interactive Visual Validation of Regression Models for Real-Time Simulation Computer Graphics Forum, 29(3): pp. 983-992, 2010.
[27] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,V. Pas-cucci,, and C. R. Johhson., Ensemble-vis: A framework for the statistical visualization of ensemble data. In IEEE Workshop on Knowledge Discoverv from Climate Data: Prediction. Extremes., pages 233-240. 2009.
[28] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn,, and R. Moorhead., Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty. IEEE Transactions on Visualization and Computer Graphics, 16: 1421-1430, 2010.
[29] H.-J. Schulz,A. M. Uhrmacher,, and H. Schumann., Visual analytics for stochastic simulation in cell biology. In Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW ‘11, pages 48:1-48:8, New York, NY, USA, 2011. ACM.
[30] H. Steffen and P. Wu, Glacial isostatic adjustment in Fennoscandia -A review of data and modeling Journal of Geodynamics, 52: 169-204, 2011.
[31] B. D Tapley, S. Bettadpur, M. Watkins,, and C. Reigber., The Gravity Re-covery and Climate Experiment: Mission Overview and Eearly Results Geophysical Research Letters, 31: L09607, 2004.
[32] B. Tomaszewski and A. MacEachren., Geo-historical context support for information foraging and sensemaking: Conceptual model, implementation, and assessment. In Visual Analytics Science and Technology (VAST), 2010 IEEE Svmposium on, pages 139-146, 2010.
[33] C. Tominski,J. F. Donges,, and T. Nocke., Information Visualization in Climate Research. In Proceedings of the International Conference Information Visualisation (IV), pages 298-305. IEEE Comouter Societv. 2011.
[34] T. Torsney-Weir, A. Saad, T. Möller, H. Hege, B. Weber, J. Verbavatz, and S. Bergner., Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration. IEEE Transactions on Visualization and Computer Graphics, 17(12): 1892-1901, 2011.
[35] T. Trucano, L. Swiler, T. Igusa, W. Oberkampf, and M. Pilch, Calibration, validation, and sensitivity analysis: What's what Reliability Engineering & System Safety, 91: 1331-1357, 2006.
[36] A. Unger and H. Schumann., Visual support for the understanding of simulation processes. In PACIFICVIS ‘09: Proceedings of the 2009 IEEE Pacific Visualization Symposium, pages 57-64, Washington, DC, USA, 2009. IEEE Computer Society.
[37] J. J. van Wijk and R. van Liere., Hyperslice: visualization of scalar functions of many variables. In Proceedings of the 4th conference on Visualization ‘93, VIS ‘93, pages 119-125, Washington, DC, USA, 1993. IEEE Computer Society.
[38] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl,, and E. Gröller,World Lines. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1458-1467, 2010.
[39] J. Waser, H. Ribicic, R. Fuchs, C. Hirsch, B. Schindler, G. Bloschl, and E. Gröller., Nodes on Ropes: A Comprehensive Data and Control Flow for Steering Ensemble Simulations. IEEE Transactions on Visualization and Computer Graphics, 17(12): 1872-1881, 2011.
[40] A. B, Watts Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge, 2001. V.
[41] X. Yuan, H. Xiao, H. Guo, P. Guo, W. Kendall, J. Huang, and Y. Zhang, Scalable Multi-variate Analytics of Seismic and Satellite-based Observational Data IEEE Transactions on Visualization and Computer Graphics, 16: 1413-1420, 2010.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool