The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2061-2068
Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.
oxygen, alumina, cracks, data visualisation, digital simulation, electronic engineering computing, integrated circuits, molecular dynamics method, electrostatic property, electrostatic dipole visualization, metal oxide, alumina, aluminum oxide, ceramic, microelectronic device, computer simulation, molecular dynamics simulation, material behavior reproduction, induced electric dipole moment visualization, oxygen atom, crack propagation simulation, fractional anisotropy value, glyph representation, mechanical force, Data visualization, Electrostatics, Image color analysis, Anisotropic magnetoresistance, Surface cracks, Computational modeling, Data models, point-based data, Visualization in physical sciences and engineering, glyph-based techniques, time-varying data
S. Grottel, P. Beck, C. Muller, G. Reina, J. Roth, H-R Trebin, T. Ertl, "Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2061-2068, Dec. 2012, doi:10.1109/TVCG.2012.282
[1] Advanced Visual Systems Inc. AVS, 2011. http:/
[2] P. J. Basser and C. Pierpaoli., Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MR1 J. of magnetic resonance. Series B, 111(3): 209-19, June 1996.
[3] P. Beck, P. Brommer, J. Roth,, and H.-R. Trebin., Ab-initio based polarizable force field generation and application to liquid silica and magnesia. J. Chem. Phys., 135: 234512, 2011.
[4] P. Brommer, P. Beck, A. Chatzopoulos, F. Gähler, J. Roth,, and H.-R. Trebin., Direct wolf summation of a polarizable force field for silica. J. Chem. Phys., 132: 194109, 2010.
[5] D. Cha, S. Son, and I. Ihm, GPU-Assisted High Quality Particle Rendering Computer Graphics Forum, 28(4): 1247-1255, June 2009.
[6] A. Doi and A. Koide, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells IEICE Trans. on Information and Systems, E74: 214-224, 1991.
[7] S. V. Eremeev, S. Schmauder, S. Hocker,, and S. E. Kulkova., Ab-initio investigation of Ni(Fe)/ZrO2(001) and Ni-Fe/ZrO2(001) interfaces Physica B, 404:2065, 2009.
[8] A. G. Evans,M. C. Lu, S. Schmauder, and M. Rühle., Some aspects of the mechanical strength of ceramic metal bonded systems Acta Me tall., 34:1643, 1986.
[9] A. A. Griffith., The phenomena of rupture and flow in solids Philos. Trans. R. Soc. London, Ser. A, 221:163, 1921.
[10] S. Grottel, G. Reina, C. Dachsbacher,, and T. Ertl., Coherent Culling and Shading for Large Molecular Dynamics Visualization. Computer Graphics Forum, 29(3): 953-34, 2010.
[11] S. Grottel, G. Reina, and T. Ertl., Optimized data transfer for time-dependent, GPU-based glyphs. In Proc. of IEEE Pac. VIS 2009, pages 65–72, Apr. 2009.
[12] S. Gumhold., Splatting Illuminated Ellipsoids with Depth Correction. In Proc. of VMV 2003, pages 245-252, 2003.
[13] S. Hocker, P. Beck, S. Schmauder, J. Roth, and H.-R. Trebin, Simulation of crack propagation in alumina with ab initio based polarizable force field J. Chem. Phys., 136(8):084707, 2012.
[14] W. Humphrey, A. Dalke, and K. Schulten, Vmd: Visual molecular dynamics J. of Molecular Graphics, 14(1): 33-34, 1996.
[15] G. Kindlmann., Superquadric tensor glyphs. In Proc. of Eurovis 2004, pages 147-154, 2004.
[16] G. Kindlmann and D. Weinstein., Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In Proc. of IEEE VIS 1999, pages 183-524, 1999.
[17] G. Kindlmann, D. Weinstein, and D. Hart, Strategies for direct volume rendering of diffusion tensor fields IEEE TVCG, 6(2): 124-138, 2000.
[18] T. Klein and T. Ertl., Illustrating Magnetic Field Lines using a Discrete Particle Model Simulation of Particles in a Magnetic Field. In Proc. of VMV 2004, pages 387-394, 2004.
[19] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities IEEE TVCG, 12(5): 1053-1060, 2006.
[20] D. R. Lipşa,R. S. Laramee,S. J. Cox,J. C. Roberts,, and R. Walker., Visualization for the Physical Sciences. In Proc. of Eurographics 2011, Apr. 2011. State-of-the-Art Reports, Errata: visualization-errata.txt.
[21] C.-K. Loong, Phonon densities of states and related thermodynamic properties of high temperature ceramics J. of the Electrochem. Soc., 19:2241, 1999.
[22] B. Lorensen., On the Death of Visualization. In Position Papers NIH/NSF Proc. Fall 2004 Workshop Visualization Research Challenges, 2004.
[23] W. E. Lorensen and H. E. Cline., Marching cubes: A high resolution 3d surface construction algorithm Computer Graphics, 21(4), 1987.
[24] A. G. Marinopoulos, S. Nufer, and C. Elsässer., Interfacial structures and energetics of basal twins in α-Al2O3: First-principles density-functional and empirical calculations Phys. Rev. B, 63:165112, Apr 2001.
[25] H. Matsuo, M. Mitsuhara, K. Ikeda, S. Hata, and H. Nakashima, Electron microscopy analysis for crack propagation behavior of alumina Int. J. Fatigue, 32:592, 2010.
[26] MegaMol project website, .
[27] W. H. Miller, A treatise on crystallography. Cambridge University Press, 1839.
[28] M. Müller, D. Charypar, and M. Gross., Particle-based fluid simulation for interactive applications. In Proc. of SIGGRAPH/Eurographics Symposium on Computer animation 2003, pages 154-159, 2003.
[29] T. Peeters, V. Prckovska, M. van Almsick, A. Vilanova, and B. ter Haar Romeny., Fast and sleek glyph rendering for interactive HARDI data exploration. Proc. of IEEE Pac. VIS 2009, pages 153–160, Apr. 2009.
[30] E. F. Pettersen,T. D. Goddard,C. C. Huang,G. S. Couch,D. M. Green-blatt,E. C. Meng,, and T. E. Ferrin., UCSF Chimera — A Visualization System for Exploratory Research and Analysis. J. of Computational Chemistry, 25: 1605-1612, 2004.
[31] G. Reina and T. Ertl., Hardware-accelerated glyphs for mono- and dipoles in molecular dynamics visualization. In Proc. of Eurovis 2005, pages 177-182, 2005.
[32] Schrödinger, The PyMOL Molecular Graphics System, 2011. http:/
[33] J. Stadler, R. Mikulla, and H.-R. Trebin, IMD: a software package for molecular dynamics studies on parallel computers Int. J. of Mod. Phys. C, 8(5): 1131-1140, 1997. http://www.itap.physikuni-stuttgart.derimd .
[34] P. Tangney and S. Scandolo, An ab initio parametrized interatomic force field for silical. Chem. Phys., 117(19): 8898-8904, 2002.
[35] D. S, Tuch. Q-ball imaging Magnetic Resonance in Medicine, 52(6): 1358–1372, Dec. 2004.
[36] D. S. Tuch,R. M. Weisskoff,J. W. Belliveau,, and V. J. Wedeen., High Angular Resolution Diffusion Imaging of the Human Brain. In Proc. of ISMRM 1999, pages 1998-1998, 1999.
[37] J. van, Wijk The Value of Visualization. In Proc. of IEEE VIS 2005, pages 79-86, 2005.
[38] Visage Imaging GmbH. Amira, 2011. http:/
[39] C.-F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. A., Jolesz. Geometrical Diffusion Measures for MRI form Tensor Basis Analysis. In Proc. of ISMRM 1997, page 1742, 1997.
[40] L. Westover, Footprint evaluation for volume rendering Proc. of SIGGRAPH 1990, 24(4): 367-376, Sept. 1990.
[41] W. Wunderlich and H. Awaji, Molecular dynamics-simulations of the fracture toughness of sapphire Material & Design, 22:53, 2001.
[42] W. Zhang and J. R, Smith. Nonstoichiometric Interfaces and Al2O3 Adhesion with Al and Ag Phys. Rev. Lett., 85: 3225-3228, Oct 2000.
500 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool