The Community for Technology Leaders
Green Image
Issue No. 03 - March (2012 vol. 18)
ISSN: 1077-2626
pp: 434-446
Ankur Patel , University of York, York
William A.P. Smith , University of York, York
In this paper, we present a framework for the groupwise processing of a set of meshes in dense correspondence. Such sets arise when modeling 3D shape variation or tracking surface motion over time. We extend a number of mesh processing tools to operate in a groupwise manner. Specifically, we present a geodesic-based surface flattening and spectral clustering algorithm which estimates a single class-optimal flattening. We also show how to modify an iterative edge collapse algorithm to perform groupwise simplification while retaining the correspondence of the data. Finally, we show how to compute class-optimal texture coordinates for the simplified meshes. We present alternative algorithms for topologically symmetric data which yield a symmetric flattening and low-resolution mesh topology. We present flattening, simplification, and texture mapping results on three different data sets and show that our approach allows the construction of low-resolution 3D morphable models.
Groupwise processing, dense correspondence, surface flattening, simplification, texture mapping.

A. Patel and W. A. Smith, "Automated Construction of Low-Resolution, Texture-Mapped, Class-Optimal Meshes," in IEEE Transactions on Visualization & Computer Graphics, vol. 18, no. , pp. 434-446, 2011.
87 ms
(Ver 3.3 (11022016))