The Community for Technology Leaders
Green Image
Issue No. 02 - February (2012 vol. 18)
ISSN: 1077-2626
pp: 228-241
Gaizka San-Vicente , CEIT-IK4, TECNUN, Manuel Lardizabal 15, San Sebastián
Iker Aguinaga , CEIT-IK4, TECNUN, Manuel Lardizabal 15, San Sebastián
Juan Tomás Celigüeta , CEIT-IK4, TECNUN, Manuel Lardizabal 15, San Sebastián
Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.
Animation, model development, physically based modeling, virtual reality.

G. San-Vicente, I. Aguinaga and J. Tomás Celigüeta, "Cubical Mass-Spring Model Design Based on a Tensile Deformation Test and Nonlinear Material Model," in IEEE Transactions on Visualization & Computer Graphics, vol. 18, no. , pp. 228-241, 2011.
94 ms
(Ver 3.3 (11022016))