Subscribe

Issue No.12 - Dec. (2011 vol.17)

pp: 2600-2609

Christophe Hurter , DSNA, IRIT, Toulouse France

Alexandru Telea , University of Groningen

Ozan Ersoy , University of Groningen

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.223

ABSTRACT

We present MoleView, a novel technique for interactive exploration of multivariate relational data. Given a spatial embedding of the data, in terms of a scatter plot or graph layout, we propose a semantic lens which selects a specific spatial and attribute-related data range. The lens keeps the selected data in focus unchanged and continuously deforms the data out of the selection range in order to maintain the context around the focus. Specific deformations include distance-based repulsion of scatter plot points, deforming straight-line node-link graph drawings, and as varying the simplification degree of bundled edge graph layouts. Using a brushing-based technique, we further show the applicability of our semantic lens for scenarios requiring a complex selection of the zones of interest. Our technique is simple to implement and provides real-time performance on large datasets. We demonstrate our technique with actual data from air and road traffic control, medical imaging, and software comprehension applications.

INDEX TERMS

Semantic lenses, magic lenses, graph bundling, attribute filtering.

CITATION

Christophe Hurter, Alexandru Telea, Ozan Ersoy, "MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots",

*IEEE Transactions on Visualization & Computer Graphics*, vol.17, no. 12, pp. 2600-2609, Dec. 2011, doi:10.1109/TVCG.2011.223REFERENCES

- [1] E. Bier, M. Stone, and K. Pier, Enhanced illustration using MagicLens filters.
IEEE CG & A, 17 (6): 62–70, 1997.- [2] E. Bier, M. Stone, K. Pier, W. Buxton, and T. De Rose, Toolglass and magic lenses: The see-through interface.
In Proc. ACM SIGGRAPH, pages 137–145, 1993.- [3] L. Costa and R. Cesar,
Shape analysis and classification: Theory and practice. CRC Press, 2000.- [4] P. Cruz, Boundaries in information visualization - towards information aesthetics, 2010. MSc Thesis, U. Coimbra, Portugal.
- [5] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li, Geometry-based edge clustering for graph visualization.
IEEE TVCG, 14 (6): 1277–1284, 2008.- [6] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, and A. Telea, Skeleton-based edge bundling for graph visualization.
In Proc. InfoVis, 2011.- [7] G. Furnas, Generalized fisheye views.
In Proc. ACM CHI, pages 16–23, 1986.- [8] E. Gansner, Y. Koren, and S. North, Topological fisheye views for visualizing large graphs.
In Proc. IEEE InfoVis, pages 175–182, 2004.- [9] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data.
IEEE TVCG, 12 (5): 741–748, 2006.- [10] D. Holten and J. J. van Wijk, Visual comparison of hierarchically organized data.
Comp. Graph. Forum, 21 (4): 759–766, 2008.- [11] D. Holten and J. J. van Wijk, Force-directed edge bundling for graph visualization.
Comp. Graph. Forum, 28 (3): 670–677, 2009.- [12] C. Hurter, B. Tissoires, and S. Conversy, FromDaDy: Spreading data across views to support iterative exploration of aircraft trajectories.
IEEE TVCG, 15 (6): 1017–1024, 2009.- [13] A. Lambert, R. Bourqui, and D. Auber, Winding roads: Routing edges into bundles.
Comp. Graph. Forum, 29 (3): 432–439, 2010.- [14] H. Lawrence and Y. Kulkarni, Anterior segment and fundus photography, 2011. emedicine.medscape.com/article 1228681-overview .
- [15] J. Looser, R. Grasset, and M. Billinghurst, A 3D flexible and tangible magic lens in augmented reality.
In Proc. ISMAR, pages 254–262. IEEE, 2007.- [16] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete, Topology-aware navigation in large networks.
In Proc. ACM CHI, pages 320–329, 2009.- [17] NASA Team. Earth lightning map, 2011. thunder.msfc.nasa.govdata.
- [18] F. Paulovich, L. Nonato, R. Minghim, and H. Levkowitz, Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping.
IEEE TVCG, 14 (3): 564–575, 2008.- [19] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd, Flow map layout.
In Proc. InfoVis, pages 219–224, 2005.- [20] R. Rao and S. Card, The table lens: merging graphical and symbolic representations in an interactive focus+context visualization for tabular information.
In Proc. ACM CHI, pages 348–356, 1994.- [21] D. Reniers, J. J. van Wijk, and A. Telea, Computing multiscale skeletons of genus 0 objects using a global importance measure.
IEEE TVCG, 14 (2): 355–368, 2008.- [22] G. Salton, Developments in automatic text retrieval.
Science, 253: 974– 980, 1991.- [23] K. Siddiqi and S. Pizer,
Medial Representations: Mathematics, Algorithms and Applications. Springer, 1999.- [24] M. Spindler and R. Dachselt, Exploring information spaces by using tangible magic lenses in a tabletop environment.
In Proc. ACM CHI (EA), pages 243–248, 2010.- [25] A. Telea, CUDA skeletonization and distance transform toolkit, 2011. www.cs.rug.nl/∼alextCUDASKEL.
- [26] A. Telea and O. Ersoy, Image-based edge bundles: Simplified visualization of large graphs.
Comp. Graph. Forum, 29 (3): 543–551, 2010.- [27] A. Telea and J. J. van Wijk, An augmented fast marching method for computing skeletons and centerlines.
In Proc. VisSym, pages 251–259, 2002.- [28] C. Tominski, J. Abello, F. van Ham, and H. Schumann, Fisheye tree views and lenses for graph visualization.
In Proc. Information Visualisation, pages 202–210, 2006.- [29] J. J. van Wijk and C. W. A. M. van Overveld, Preset based interaction with high dimensional parameter spaces.
In F. Post, G. Nielsen, and G. Bonneau editors, Data visualization - State of the art, pages 391–406. Kluwer, 2003.- [30] N. Willems, H. van de Wetering, and J. J. van Wijk, Visualization of vessel movements.
Comp. Graph. Forum, 28 (3): 959–966, 2009.- [31] N. Wong and S. Carpendale, Supporting interactive graph exploration with edge plucking.
In Proc. IEEE Visualization (interactive posters), 2005.- [32] N. Wong and S. Carpendale, Supporting interactive graph exploration using edge plucking.
In Proc. SPIE, pages 235–246, 2007.- [33] N. Wong, S. Carpendale, and S. Greenberg, EdgeLens: An interactive method for managing edge congestion in graphs.
In Proc. IEEE InfoVis, pages 167–175, 2003.- [34] Y. Yang, J. Chen, and M. Beheshti, Nonlinear perspective projections and magic lenses: 3D view deformation.
IEEE CG & A, 25 (1): 567–582, 2005.- [35] J. Yi, R. Melton, J. Stasko, and J. Jacko, Dust & magnet: Multivariate information visualization using a magnet metaphor.
J. of Information Visualization, 4 (4): 542–551, 2006. |