The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 2291-2300
Alexander Lex , Graz University of Technology
Hans-Jörg Schulz , Graz University of Technology
Marc Streit , Graz University of Technology
Christian Partl , Graz University of Technology
Dieter Schmalstieg , Graz University of Technology
Large volumes of real-world data often exhibit inhomogeneities: vertically in the form of correlated or independent dimensions and horizontally in the form of clustered or scattered data items. In essence, these inhomogeneities form the patterns in the data that researchers are trying to find and understand. Sophisticated statistical methods are available to reveal these patterns, however, the visualization of their outcomes is mostly still performed in a one-view-fits-all manner. In contrast, our novel visualization approach, VisBricks, acknowledges the inhomogeneity of the data and the need for different visualizations that suit the individual characteristics of the different data subsets. The overall visualization of the entire data set is patched together from smaller visualizations, there is one VisBrick for each cluster in each group of interdependent dimensions. Whereas the total impression of all VisBricks together gives a comprehensive high-level overview of the different groups of data, each VisBrick independently shows the details of the group of data it represents. State-of-the-art brushing and visual linking between all VisBricks furthermore allows the comparison of the groupings and the distribution of data items among them. In this paper, we introduce the VisBricks visualization concept, discuss its design rationale and implementation, and demonstrate its usefulness by applying it to a use case from the field of biomedicine.
Inhomogeneous data, multiple coordinated views, multiform visualization.
Alexander Lex, Hans-Jörg Schulz, Marc Streit, Christian Partl, Dieter Schmalstieg, "VisBricks: Multiform Visualization of Large, Inhomogeneous Data", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2291-2300, Dec. 2011, doi:10.1109/TVCG.2011.250
[1] J. Abello , F. Ham, and N. Krishnan, ASK-GraphView: a large scale graph visualization system. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 669–676, 2006.
[2] D. Archambault , T. Munzner, and D. Auber, TopoLayout: multilevel graph layout by topological features. IEEE Transactions on Visualization and Computer Graphics, 13 (2): 305–317, 2007.
[3] C. A. Brewer, Colorbrewer. http:/, last accessed March 30, 2011, 2009.
[4] C. Collins and S. Carpendale, VisLink: revealing relationships amongst visualizations. IEEE Transactions on Visualization and Computer Graphics (InfoVis '07), 13 (6): 1192–1199, 2007.
[5] A. Dix and G. Ellis, By chance: enhancing interaction with large data sets through statistical sampling. In Proceedings of the ACM Conference on Advanced Visual Interfaces (AVI '02), pages 167–176. ACM Press, 2002.
[6] C. Eaton , C. Plaisant, and T. Drizd, Visualizing missing data: Graph interpretation user study. In Proceedings of the Conference on Human-Computer Interaction (INTERACT '05), volume 3585 of Lecture Notes in Computer Science (LNCS), pages 861–872. Springer, 2005.
[7] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences USA, 95 (25): 14863–14868, 1998.
[8] N. Elmqvist and J. Fekete, Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer Graphics, 16 (3): 439–454, 2010.
[9] M. Ferreira de Oliveira and H. Levkowitz, From visual data exploration to visual data mining: a survey. IEEE Transactions on Visualization and Computer Graphics, 9 (3): 378–394, 2003.
[10] B. J. J. Frey and D. Dueck, Clustering by passing messages between data points. Science, 315 (5814): 972–976, 2007.
[11] M. Hall , E. Frank , G. Holmes , B. Pfahringer , P. Reutemann, and I. H. Witten, The WEKA data mining software: an update. SIGKDD Explorations, 11 (1): 10–18, 2009.
[12] N. Henry, J. D. Fekete, and M. J. McGuffin, NodeTrix: a hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics (InfoVis '07), 13 (6): 1302–1309, 2007.
[13] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics (InfoVis '06), 12 (5): 741–748, 2006.
[14] D. A. Keim , F. Mansmann , J. Schneidewind, and H. Ziegler, Challenges in visual data analysis. In Proceedings of the Conference on Information Visualisation (IV '06), pages 9–14, 2006.
[15] W. Klsgen, Types and forms of data. In W. Klsgen, and J. M. Zytkow editors, , Handbook of data mining and knowledge discovery, pages 33– 44.Oxford University Press, 2002.
[16] R. Kosara , F. Bendix, and H. Hauser, Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics, 12 (4): 558–568, 2006.
[17] M. Krzywinski , J. Schein , I. Birol , J. Connors , R. Gascoyne, D. Horsman, S. J. Jones, and M. A. Marra, Circos: An information aesthetic for comparative genomics. Genome Research, 19 (9): 1639–1645, 2009.
[18] A. Lex , M. Streit, E. Kruijff, and D. Schmalstieg, Caleydo: Design and evaluation of a visual analysis framework for gene expression data in its biological context. In Proceeding of the IEEE Symposium on Pacific Visualization (PacificVis '10), pages 57–64.IEEE Computer Society Press, 2010.
[19] A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg, Comparative analysis of multidimensional, quantitative data. IEEE Transactions on Visualization and Computer Graphics (InfoVis '10), 16 (6): 1027–1035, 2010.
[20] A. MacEachren, D. Xiping, F. Hardisty, D. Guo, and G. Lengerich, Exploring high-D spaces with multiform matrices and small multiples. In Proceedings of the IEEE Symposium on Information Visualization (Info-Vis '03), pages 31–38.IEEE Computer Society Press, 2003.
[21] S. Mansmann and M. H. Scholl, Exploring OLAP aggregates with hierarchical visualization techniques. In Proceedings of the ACM Symposium on Applied Computing (SAC '07), pages 1067–1073. ACM Press, 2007.
[22] M. Meyer, T. Munzner, and H. Pfister, MizBee: a multiscale synteny browser. IEEE Transactions on Visualization and Computer Graphics (InfoVis '09), 15 (6): 897–904, 2009.
[23] T. Nocke and H. Schumann, Meta data for visual data mining. In Proceedings of the Conference on Computer Graphics and Imaging (CGIM'02), 2002.
[24] T. Pham, R. Hess, C. Ju, E. Zhang, and R. Metoyer, Visualization of diversity in large multivariate data sets. IEEE Transactions on Visualization and Computer Graphics (InfoVis '10), 16 (6): 1053–1062, 2010.
[25] J. C. Roberts, Multiple-View and multiform visualization. In Visual Data Exploration and Analysis VII, Proceedings of SPIE, volume 3960, pages 176–185, 2000.
[26] S. Rufiange, M. J. McGuffin, and C. Fuhrman, Visualisation hy-bride des liens hirarchiques incorporant des treemaps dans une matrice d'adjacence. In Proceedings of the Conference on Association Francophone d' Interaction Homme-Machine (IHM '09), pages 51–54, 2009.
[27] H. Schulz, M. John, A. Unger, and H. Schumann, Visual analysis of bipartite biological networks. In Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine (VCBM '08), pages 135–142. Eurographics, 2008.
[28] J. Seo and B. Shneiderman, Interactively exploring hierarchical clustering results. Computer, 35 (7): 80–86, 2002.
[29] B. Shneiderman and A. Aris, Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics (In-foVis '06), 12 (5): 733–740, 2006.
[30] J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center, 2005.
[31] L. Wilkinson, The history of the cluster heat map. The American Statistician, 63 (2): 179–184, 2009.
[32] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding, and M. Stonebraker, DataSplash: a direct manipulation environment for programming semantic zoom visualizations of tabular data. Journal of Visual Languages & Computing, 12 (5): 551–571, 2001.
[33] J. Yang and S. Barlowe, A dimension management framework for high dimensional visualization. In Advances in Information and Intelligent Systems, number 251 in Studies in Computational Intelligence, pages 267–288. Springer, 2009.
[34] S. Zhao, M. McGuffin, and M. Chignell, Elastic hierarchies: combining treemaps and node-link diagrams. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis '05), pages 57–64. IEEE Computer Society Press, 2005.
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool