The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 2283-2290
Ulrik Brandes , University of Konstanz
Bobo Nick , University of Konstanz
In modeling and analysis of longitudinal social networks, visual exploration is used in particular to complement and inform other methods. The most common graphical representations for this purpose appear to be animations and small multiples of intermediate states, depending on the type of media available. We present an alternative approach based on matrix representation of gestaltlines (a combination of Tufte's sparklines with glyphs based on gestalt theory). As a result, we obtain static, compact, yet data-rich diagrams that support specifically the exploration of evolving dyadic relations and persistent group structure, although at the expense of cross-sectional network views and indirect linkages.
Network Visualization, Social Networks, Time Series Data, Visual Knowledge Discovery and Representation, Glyphbased Techniques.
Ulrik Brandes, Bobo Nick, "Asymmetric Relations in Longitudinal Social Networks", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2283-2290, Dec. 2011, doi:10.1109/TVCG.2011.169
[1] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.
[2] S. P. Borgatti and D. S. Halgin, Network theorizing. Organization Science, 2011. To appear.
[3] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, Network analysis in the social sciences. Science, 323 (5916): 892–895, 2009.
[4] U. Brandes, N. Indlekofer, and M. Mader, Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Submitted to Social Networks, 2011.
[5] U. Brandes, P. Kenis, and J. Raab, Explanation through network visualization. Methodology, 2 (1): 16–23, 2006. Spanish translation in REDES 9 (6), 2005.
[6] U. Brandes, P. Kenis, and D. Wagner, Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics, 9 (2): 241–253, 2003.
[7] U. Brandes, J. Raab, and D. Wagner, Exploratory network visualization: Simultaneous display of actor status and connections. Journal of Social Structure, 2 (4), 2001.
[8] U. Brandes and D. Wagner, A Bayesian paradigm for dynamic graph layout. In G. Di Battista, editor, Proceedings of the 5th International Symposium on Graph Drawing (GD'97), volume 1353 of Lecture Notes in Computer Science, pages 236–247. Springer-Verlag, 1997.
[9] J. M. Chambers, W. S., Cleveland, B. Kleiner, and P. A. Tukey Graphical Methods for Data Analysis., Chapman and Hall, 1983.
[10] D. Chang, L. Dooley, and J. E. Tuovinen, Gestalt theory in visual screen design: a new look at an old subject. In CRPIT '02: Proceedings of the 7th world conference on computers in education, 2002.
[11] R. K. Christopher, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware, Thoughts on user studies: Why, how, and when. IEEE Computer Graphics and Applications, 23: 20–25, 2003.
[12] C. D. Correa and K.-L. Ma, Visualizing social networks. In C. C. Aggarwal, editor, Social Network Data Mining, pages 307–326. Kluwer Academic Publishers, 2011.
[13] J. Díaz, J. Petit, and M. Serna, A survey of graph layout problems. ACM Computing Surveys, 34 (3): 313–356, 2002.
[14] P. Doreian, V. Batagelj, and A. Ferligoj Generalized Blockmodeling. Cambridge University Press, 2005.
[15] P. Doreian, R. Kapuscinski, D. Krackhardt, and J. Szczypula, A brief history of balance through time. Journal of Mathematical Sociology, 21: 113–131, 1996.
[16] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete, ZAME: Interactive large-scale graph visualization. In Proc. IEEE Pacific Visualization Symposium (PacificVis 2008), pages 215–222, 2008.
[17] S. Few, Information Dashboard Design : The Effective Visual Communication of Data. O'Reilly, 2006.
[18] K. Flieder and F. Mödritscher, Foundations of a pattern language based on gestalt principles. In CHI '06 extended abstracts on Human factors in computing systems. ACM, 2006.
[19] E. Forsyth and L. Katz, A matrix approach to the analysis of sociometric data: preliminary report. Sociometry, 9: 340–347, 1946.
[20] L. C. Freeman, Visualizing social networks. Journal of Social Structure, 1 (1), 2000.
[21] Y. Frishman and A. Tal, Online dynamic graph drawing. IEEE Transactions on Visualization and Computer Graphics, 14 (4): 727–740, 2008.
[22] M. Ghoniem, J.-D. Fekete, and P. Castagliola, On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Information Visualization, 4: 114–135, 2005.
[23] M. Ghoniem, N. Jussien, and J.-D. Fekete, Visexp: visualizing constraint solver dynamics using explanations. In FLAIRS'04: 17th intl Florida Artificial Intelligence Research Society conf. AAAI press, 2004.
[24] B. D. Greenhill, M. J. Ward, and A. E. Sacks, The 'separation plot': A new visual method for evaluating the predictive power of logit/probit models. APSA 2009 Toronto Meeting Paper. Available at SSRN: http://ssrn.comabstract=1450589, 2009.
[25] M. S. Handcock and K. J. Gile, Modeling social networks from sampled data. Annals of Applied Statistics, 4 (1): 5–25, 2010.
[26] M. Harrower and C. A. Brewer, an online tool for selecting colour schemes for maps. The Cartographic Journal, 40 (1): 27–30, 2003.
[27] J. Heer and M. Agrawala, Multi-scale banking to 45 degrees. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 701–708, 2006.
[28] J. Heer, N. Kong, and M. Agrawala, Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In In Proc. ACM Human Factors in Computing Systems (CHI), pages 1303–1312, 2009.
[29] N. Henry, J.-D. Fekete, and M. J. McGuffin, NodeTrix: A hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1302–1309, 2007.
[30] D. Holten and J. J. van Wijk, A user study on visualizing directed edges in graphs. In Proceedings of the 27th international conference on Human factors in computing systems, CHI '09, pages 2299–2308, 2009.
[31] M. Kaufmann and D. Wagner editors. , Drawing Graphs: Methods and Models. Springer, 2001.
[32] D. A. Keim, Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics, 6 (1): 59–78, 2000.
[33] G. Kossinets, Effects of missing data in social networks. Social Networks, 28 (3): 247–268, 2006.
[34] P. V. Marsden, Network data and measurement. Annual Review of Sociology, 16: 435–463, 1990.
[35] J. Moody, D. A. McFarland, and S. Bender-DeMoll, Dynamic network visualization. American Journal of Sociology, 110 (4): 1206–1241, 2005.
[36] J. L. Moreno, Who Shall Survive? Foundations of Sociometry, Group Psychotherapy, and Sociodrama. Beacon House, 1953. Originally published in 1934.
[37] M. Morris, Overview of network survey designs. In M. Morris, editor, Network Epidemiology: A handbook for survey design and data collection, pages 8–24. Oxford University Press, 1st edition, 2004.
[38] K. Nakao and A. K. Romney, Longitudinal approach to subgroup formation: re-analysis of newcomb's fraternity data. Social Networks, 15 (2): 109–131, 1993.
[39] K. V. Nesbitt and C. Friedrich, Applying gestalt principles to animated visualizations of network data. In Proc. Information Visualisation, pages 737–743, 2002.
[40] T. M. Newcomb, The Acquaintance Process. New York: Holt, Rinehart & Winston, 1961.
[41] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones, Abyss-explorer: Visualizing genome sequence assemblies. IEEE Transactions on Visualization and Computer Graphics, 15: 881–888, 2009.
[42] P. Nordlie, A longitudinal study of interpersonal attraction in a natural group setting. Unpublished Ph.D. dissertation, University of Michigan, 1958.
[43] A. Perer and B. Shneiderman, Balancing systematic and flexible exploration of social networks. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 693–700, 2006.
[44] R. Sedgewick, Algorithms in C. Addison-Wesley, 1998.
[45] T. Snijders, Stochastic actor-oriented models for network change. Journal of Mathematical Sociology, 21: 149–172, 1996.
[46] T. A. Snijders, G. G. van de Bunt, and C. E. Steglich, Introduction to stochastic actor-based models for network dynamics. Social Networks, 32 (1): 44–60, 2010.
[47] K. Stein, R. Wegener, and C. Schlieder, Pixel-oriented visualization of change in social networks. In Advances in Social Networks Analysis and Mining, pages 233–240, 2010.
[48] R. J. Sternberg Cognitive Psychology. Wadsworth Publishing, 5th edition, 2008.
[49] S. Thakur and T.-M. Rhyne, Data vases: 2d and 3d plots for visualizing multiple time series. In Proc. of the 5th International Symposium on Advances in Visual Computing: Part II, pages 929–938, 2009.
[50] A. Tikhonova, C. D. Correa, and K.-L. Ma, Visualization by proxy: A novel framework for deferred interaction with volume data. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1551–1559, 2010.
[51] M. Tory and T. Moller, Evaluating visualizations: Do expert reviews work? IEEE Computer Graphics and Applications, 25: 8–11, 2005.
[52] M. Trappmann, H. J. Hummell, and W. Sodeur, Strukturanalyse sozialer Netzwerke. VS Verlag, 2nd edition, 2011.
[53] E. R. Tufte Envisioning Information. Graphics Press, 1990.
[54] E. R. Tufte Beautiful Evidence. Graphics Press, 2006.
[55] C. Ware, Information Visualization: Perception for Design. Morgan Kaufmann 2nd edition, 2004.
[56] M. Wattenberg, Visual exploration of multivariate graphs. In Proc. ACM SIGCHI Conference onHuman Factors inComputing Systems (CHI 2006), pages 811–819, 2006.
[57] M. Wertheimer, Untersuchungen zur Lehre von der Gestalt II. Psycholo-gische Forschung, 4: 301–350, 1923.
[58] H. C. White, S. A. Boorman, and R. L. Breiger, Social structure from multiple networks. I. Blockmodels of roles and positions. The American Journal of Sociology, 81 (4): 730–780, 1976.
[59] J.-S. Yi, N. Elmqvist, and S. Lee, TimeMatrix: Visualizing temporal social networks using interactive matrix-based visualizations. International Journal of Human-Computer Interaction, 26 (11 & 12): 1031–1051, 2010.
28 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool