The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 1949-1958
Marcel Hlawatsch , Visualization Research Center, University of Stuttgart
Philipp Leube , Institute of Hydraulic Engineering (LH2), University of Stuttgart
Wolfgang Nowak , Institute of Hydraulic Engineering (LH2), University of Stuttgart
Daniel Weiskopf , Visualization Research Center, University of Stuttgart
A new type of glyph is introduced to visualize unsteady flow with static images, allowing easier analysis of time-dependent phenomena compared to animated visualization. Adopting the visual metaphor of radar displays, this glyph represents flow directions by angles and time by radius in spherical coordinates. Dense seeding of flow radar glyphs on the flow domain naturally lends itself to multi-scale visualization: zoomed-out views show aggregated overviews, zooming-in enables detailed analysis of spatial and temporal characteristics. Uncertainty visualization is supported by extending the glyph to display possible ranges of flow directions. The paper focuses on 2D flow, but includes a discussion of 3D flow as well. Examples from CFD and the field of stochastic hydrogeology show that it is easy to discriminate regions of different spatiotemporal flow behavior and regions of different uncertainty variations in space and time. The examples also demonstrate that parameter studies can be analyzed because the glyph design facilitates comparative visualization. Finally, different variants of interactive GPU-accelerated implementations are discussed.
Visualization, glyph, uncertainty, unsteady flow.
Marcel Hlawatsch, Philipp Leube, Wolfgang Nowak, Daniel Weiskopf, "Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 1949-1958, Dec. 2011, doi:10.1109/TVCG.2011.203
[1] R. S. Allendes Osorio and K. W. Brodlie, Uncertain flow visualization using LIC. In Proceedings of EG UK Theory and Practice of Computer Graphics, pages 1–9, 2009.
[2] P. Bak, F. Mansmann, H. Janetzko, and D. Keim, Spatiotemporal analysis of sensor logs using growth ring maps. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 913–920, 2009.
[3] J. Bear, Dynamics of Fluids in Porous Media. Elsevier, 1972.
[4] F. H. Bertrand and P. A. Tanguy, Graphical representation of two-dimensional fluid flow by stream vectors. Communications in Applied Numerical Methods, 4 (2): 213–217, 1988.
[5] E. Boring and A. Pang, Directional flow visualization of vector fields. In Proceedings of IEEE Visualization 1996, pages 389–392, 1996.
[6] R. Botchen, D. Weiskopf, and T. Ertl, Texture-based visualization of uncertainty in flow fields. In Proceedings of IEEE Visualization 2005, pages 647–654, 2005.
[7] M. Burch and S. Diehl, TimeRadarTrees: Visualizing dynamic compound digraphs. Computer Graphics Forum, 27 (3): 823–830, 2008.
[8] J. V. Carlis and J. A. Konstan, Interactive visualization of serial periodic data. In Proceedings of UIST 1998, pages 29–38, 1998.
[9] C. Chen, Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57 (3): 359–377, 2006.
[10] W. C. de Leeuw and J. J. van Wijk, A probe for local flow field visualization. In Proceedings of IEEE Visualization 1993, pages 39–45, 1993.
[11] D. Dovey, Vector plots for irregular grids. In Proceedings of IEEE Visualization 1995, pages 248–253, 1995.
[12] G. Draper, Y. Livnat, and R. Riesenfeld, A survey of radial methods for information visualization. IEEE Transactions on Visualization and Computer Graphics, 15 (5): 759–776, 2009.
[13] S. Gumhold, Splatting illuminated ellipsoids with depth correction. In Proceedings of VMV 2003, pages 245–252, 2003.
[14] S. Huling and B. Pivetz, In-Situ Chemical Oxidation. Technical report, EPA 600-R-06-072. US Environmental Protection Agency (USEPA), 2006.
[15] C. Johnson, Top scientific visualization research problems. IEEE Computer Graphics and Applications, 24 (4): 13–17, 2004.
[16] A. Joshi and P. Rheingans, Illustration-inspired techniques for visualizing time-varying data. In Proceedings of IEEE Visualization 2005, pages 679–686, 2005.
[17] R. V. Klassen and S. J. Harrington, Shadowed hedgehogs: A technique for visualizing 2D slices of 3D vector fields. In Proceedings of IEEE Visualization 1991, pages 148–153, 1991.
[18] H. Löffelmann, L. Mroz, and E. Gröller, Hierarchical streamarrows for the visualization of dynamical systems. In Proceedings of the 8th EUROGRAPHICS Workshop on Visualization in Scientific Computing, pages 203–211, 1997.
[19] S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink, UFLOW: Visualizing uncertainty in fluid flow. In Proceedings of IEEE Visualization 1996, pages 249–254, 1996.
[20] M. Otto, T. Germer, H.-C. C, and H. Theisel, Uncertain 2D vector field topology. Computer Graphics Forum, 29 (2): 347–356, 2010.
[21] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha, Approaches to uncertainty visualization. The Visual Computer, 13 (8): 370–390, 1997.
[22] R. Pickett and G. Grinstein, Iconographic displays for visualizing multidimensional data. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics 1988, pages 514–519, 1988.
[23] Y. Rubin, Applied Stochastic Hydrogeology. Oxford University Press, 2003.
[24] T. Schultz and G. Kindlmann, A maximum enhancing higher-order tensor glyph. Computer Graphics Forum, 29 (3): 1143–1152, 2010.
[25] C. Tominski, P. Schulze-Wollgast, and H. Schumann, 3D information visualization for time dependent data on maps. In Proceedings of the Ninth International Conference on Information Visualisation, pages 175– 181, 2005.
[26] B. Tversky, J. B. Morrison, and M. Betrancourt, Animation: can it facilitate? International Journal of Human-Computer Studies, 57 (4): 247–262, 2002.
[27] M. O. Ward, A taxonomy of glyph placement strategies for multidimensional data visualization. Information Visualization, 1 (3-4): 194–210, December 2002.
[28] M. Weber, M. Alexa, and W. Müller, Visualizing time-series on spirals. In Proceedings of IEEE Symposium on Information Visualization 2001, pages 7–13, 2001.
[29] T. Weinkauf, H. Theisel, and O. Sorkine, Cusps of characteristic curves and intersection-aware visualization of path and streak lines. In Proceedings of TopoInVis, 2011.
[30] C. Wittenbrink, A. Pang, and S. Lodha, Glyphs for visualizing uncertainty in vector fields. IEEE Transactions on Visualization and Computer Graphics, 2 (3): 266–279, 1996.
[31] J. Woodring and H.-W. Shen, Chronovolumes: a direct rendering technique for visualizing time-varying data. In Proceedings of the 2003 Euro-graphics/IEEE TVCG Workshop on Volume graphics, pages 27–34, 2003.
[32] J. Woodring, C. Wang, and H.-W. Shen, High dimensional direct rendering of time-varying volumetric data. In Proceedings of IEEE Visualization 2003, pages 417–424, 2003.
[33] J. Zhao, P. Forer, and A. S. Harvey, Activities, ringmaps and geovisualization of large human movement fields. Information Visualization, 7: 198– 209, June 2008.
[34] T. Zuk and S. Carpendale, Theoretical analysis of uncertainty visualizations. In Proceedings of SPIE-IS&T Conference on Electronic Imaging, pages 66–79, 2006.
[35] T. Zuk, J. Downton, D. Gray, S. Carpendale, and J. Liang, Exploration of uncertainty in bidirectional vector fields. In Proceedings of SPIE-IS&T Conference on Electronic Imaging, 2008.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool