The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 1892-1901
Thomas Torsney-Weir , Simon Fraser University
Ahmed Saad , Simon Fraser University
Torsten Möller , Simon Fraser University
Hans-Christian Hege , Zuse Institute Berlin
Britta Weber , Zuse Institute Berlin
Jean-Marc Verbavatz , Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)
In this paper we address the difficult problem of parameter-finding in image segmentation. We replace a tedious manual process that is often based on guess-work and luck by a principled approach that systematically explores the parameter space. Our core idea is the following two-stage technique: We start with a sparse sampling of the parameter space and apply a statistical model to estimate the response of the segmentation algorithm. The statistical model incorporates a model of uncertainty of the estimation which we use in conjunction with the actual estimate in (visually) guiding the user towards areas that need refinement by placing additional sample points. In the second stage the user navigates through the parameter space in order to determine areas where the response value (goodness of segmentation) is high. In our exploration we rely on existing ground-truth images in order to evaluate the "goodness" of an image segmentation technique. We evaluate its usefulness by demonstrating this technique on two image segmentation algorithms: a three parameter model to detect microtubules in electron tomograms and an eight parameter model to identify functional regions in dynamic Positron Emission Tomography scans.
Parameter exploration, Image segmentation, Gaussian Process Model.
Thomas Torsney-Weir, Ahmed Saad, Torsten Möller, Hans-Christian Hege, Britta Weber, Jean-Marc Verbavatz, "Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 1892-1901, Dec. 2011, doi:10.1109/TVCG.2011.248
[1] S. P. Awate, T. Tasdizen, N. Foster, and R. T. Whitaker, Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Medical Image Analysis, 10: 726–739, 2006.
[2] S. Bachthaler and D. Weiskopf, Continuous scatterplots. IEEE Trans. on Visualization and Computer Graphics, 14 (6): 1428–35, 2008.
[3] M. J. Bayarri, J. O. Berger, E. S. Calder, K. Dalbey, S. Lunagomez, A. K. Patra, E. B. Pitman, E. T. Spiller, and R. L. Wolpert, Using statistical and computer models to quantify volcanic hazards. Technometrics, 51 (4): 402–413, Nov. 2009.
[4] W. Berger and H. Piringer, Interactive visual analysis of multiobjective optimizations. In Visual Analytics Science and Technology (VAST),2010 IEEE Symposium on, pages 215–216, October 2010.
[5] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller, Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Computer Graphics Forum (Proc. of EuroVis 2011), 30 (3): 911–920, June 2011.
[6] G. E. P. Box and K. B. Wilson, On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13 (1):pp. 1–45, 1951.
[7] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23 (11): 1222–1239, 2001.
[8] E. Brochu, T. Brochu, and N. de Freitas, A Bayesian interactive optimization approach to procedural animation design. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 103–112. Eurographics Association, 2010.
[9] S. Bruckner and T. Möller, Result-driven exploration of simulation parameter spaces for visual effects design. IEEE Trans. on Visualization and Computer Graphics, 16 (6): 1468–76, 2010.
[10] J. Canny, A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Trans. on, PAMI-8 (6): 679–698, Nov 1986.
[11] W. L. Chapman, W. J. Welch, K. P. Bowman, J. Sacks, and J. E. Walsh, Arctic sea ice variability: Model sensitivities and a multidecadal simulation. Journal of Geophysical Research, 99 (93): 919–935, 1994.
[12] W. S. Cleveland, The elements of graphing data. Wadsworth Publ. Co., Belmont, CA, USA, 1985.
[13] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz, Where do people draw lines? ACM Trans. on Graphics, 27 (3): 1–11, 2008.
[14] L. Dice, Measures of the amount of ecologic association between species. Ecology, 26 (3): 297–302, 1945.
[15] W. Gough and W. Welch, Parameter space exploration of an ocean general circulation model using an isopycnal mixing parameterization. Journal of Marine Research, 52 (5): 773–796, 1994.
[16] L. Grady, Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (11): 1768–1783, 2006.
[17] M. A. Harrower and C. A. Brewer, An online tool for selecting color schemes for maps. The Cartographic Journal, 40 (1): 27– 37, 2003.
[18] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1: 69–91, 1985. 10.1007/BF01898350.
[19] T. J. Jankun-Kelly and K.-L. Ma, A spreadsheet interface for visualization exploration. In Proc. of the 11th IEEE Conference on Visualization (Vis '00), pages 69–76. IEEE Computer Society, October 2000.
[20] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13 (4): 455–492, 1998.
[21] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models. International Journal of Computer Vision, 1 (4): 321–331, 1988.
[22] S. Kumar and M. Hebert, Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proc. of ICCV, pages 1150–1157, 2003.
[23] K.-L. Ma, Image graphs – a novel approach to visual data exploration. In Proc. of IEEE Visualization 1999, pages 81–513. IEEE, 1999.
[24] J. R. MacIntosh editor. Cellular Electron Microscopy. Elsevier, 2007.
[25] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, Design Galleries: A general approach to setting parameters for computer graphics and animation. In Proc. 24th Ann. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH '97, pages 389–400. ACM Press, 1997.
[26] C. Mcintosh and G. Hamarneh, Is a single energy functional sufficient? adaptive energy functionals and automatic initialization. In Proc. of the 10th international conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI '07, pages 503–510, 2007.
[27] C. Mcintosh and G. Hamarneh, Optimal weights for convex functionals in medical image segmentation. In Proc. of the 5th International Symposium on Advances in Visual Computing, pages 1079–1088, 2009.
[28] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21 (2): 239–245, 1979.
[29] K. Miettinen, P. Eskelinen, F. Ruiz, and M. Luque, NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research, 206 (2): 426 – 434, October 2010.
[30] A. Mitiche and I. B. Ayed, Variational and Level Set Methods in Image Segmentation, volume 5 of Springer Topics in Signal Processing. Springer Verlag, 2011.
[31] J. E. Oakley and A. O'Hagan, Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66 (3): 751–769, Aug. 2004.
[32] D. L. Pham, C. Xu, and J. L. Prince, Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2: 315–337, 2000.
[33] H. Piringer, W. Berger, and J. Krasser, HyperMoVal: Interactive visual validation of regression models for real-time simulation. Computer Graphics Forum, 29 (3): 983–992, 2010.
[34] A. J. Pretorius, M. Bray, A. E. Carpenter, and R. A. Ruddle, Visualization of parameter space for image analysis. IEEE Trans. on Visualization and Computer Graphics, 2011. In Press.
[35] A. Saad, G. Hamarneh, T. Möller, and B. Smith, Kinetic modeling based probabilistic segmentation for molecular images. In Proc. of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI '08, pages 244–252, 2008.
[36] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments. Springer-Verlag, 2003.
[37] C. Scheidegger, H. Vo, D. Koop, J. Freire, and C. Silva, Querying and creating visualizations by analogy. IEEE Trans. on Visualization and Computer Graphics, 13: 1560–1567, November 2007.
[38] M. Schonlau and W. J. Welch, Screening the input variables to a computer model via analysis of variance and visualization. In A. Dean, and S. Lewis editors, Screening, pages 308–327.Springer New York, 2006.
[39] M. Sezgin, and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13 (1): 146–168, 2004.
[40] M. Szummer, P. Kohli, and D. Hoiem, Learning CRFs using graph cuts. In Proc. ECCV, pages 582–595, 2008.
[41] J. Talbot, S. Lin, and P. Hanrahan, An extension of Wilkinson's algorithm for positioning tick labels on axes. IEEE Trans. on Visualization and Computer Graphics, 16 (6): 1036–1043, 2010.
[42] L. Tweedie and R. Spence, The Prosection Matrix: A tool to support the interactive exploration of statistical models and data. Computational Statistics, 13 (1): 65–76, 1998.
[43] J. van Wijk and R. van Liere, Hyperslice: Visualization of scalar functions of many variables. In Proc. of the 4th Conference on Visualiza-tion'93, pages 119–125. IEEE Computer Society, 1993.
[44] M.O. Ward, XmdvTool: Integrating multiple methods for visualizing multivariate data. In Proc. of the Conference on Visualization '94, Vis '94, pages 326–333. IEEE Computer Society Press, 1994.
[45] J. Waser, R. Fuchs, H. Ribicić, B. Schindler, G. Blöschl, and E. Gröller, World lines. IEEE Trans. on Visualization and Computer Graphics, 16 (6): 1458–67, 2010.
[46] B. Weber, M. Möller, S. Prohaska, D. Günther, and H.-C. Hege, Fast tracing of microtubules in electron tomograms. Poster, 2011. Workshop on Visualizing Biological Data (VIZBI 2011), March 16-19, Cambridge, MA, USA.
[47] P. Zhao and B. Yu, Stagewise Lasso. Journal of Machine Learning Research, 8: 2701–2726, 2007.
[48] Y. Zhu, B. Carragher, R. M. Glaeser, D. Fellmann, C. Bajaj, M. Bern, F. Mouche, F. de Haas, R. J. Hall, D. Kriegman, S. J. Ludtke, S. Mallick, P. A. Penczek, A. M. Roseman, F. J. Sigworth, N. Volkmann, and C. S. Potter, Automatic particle selection: Results of a comparative study. Journal of Structural Biology, 145 (1-2): 3–14, 01 2004.
53 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool