The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 1765-1774
Xavier Tricoche , Purdue University
Christoph Garth , UC Davis
Allen Sanderson , University of Utah
Area-preserving maps are found across a wide range of scientific and engineering problems. Their study is made challenging by the significant computational effort typically required for their inspection but more fundamentally by the fractal complexity of salient structures. The visual inspection of these maps reveals a remarkable topological picture consisting of fixed (or periodic) points embedded in so-called island chains, invariant manifolds, and regions of ergodic behavior. This paper is concerned with the effective visualization and precise topological analysis of area-preserving maps with two degrees of freedom from numerical or analytical data. Specifically, a method is presented for the automatic extraction and characterization of fixed points and the computation of their invariant manifolds, also known as separatrices, to yield a complete picture of the structures present within the scale and complexity bounds selected by the user. This general approach offers a significant improvement over the visual representations that are so far available for area-preserving maps. The technique is demonstrated on a numerical simulation of magnetic confinement in a fusion reactor.
Poincaré map, dynamical systems, topology, chaos, area-preserving maps, invariant manifolds.
Xavier Tricoche, Christoph Garth, Allen Sanderson, "Visualization of Topological Structures in Area-Preserving Maps", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 1765-1774, Dec. 2011, doi:10.1109/TVCG.2011.254
[1] A. A. Andronov, Qualitative Theory of Second-Order Dynamic Systems. John Wiley & Sons, 1973.
[2] V. I. Arnold, Proof of A. N. Kolmogorov's thereom on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18 (5): 9, 1963.
[3] A. Bagherjeiran and C. Kamath, Graph-based methods for orbit classification. In Proc. of Sixth SIAM International Conference on Data Mining, April 2006.
[4] H. Battke, D. Stalling, and H.-C. Hege, Fast line integral convolution for arbitrary surfaces in 3d. In S.Berlin, editor, Visualization and Mathematics, pages 181–195, 1997.
[5] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A topolog-ical hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph., 10 (4): 385–396, 2004.
[6] R. L. Burden and J. D. Faires, Numerical Analysis. PWS-Kent, Boston, 1993.
[7] B. Cabral and L. Leedom, Imaging vector fields using line integral convolution. Computer Graphics (SIGGRAPH '93 Proceedings), 27 (4): 263– 272, 1993.
[8] T. Delmarcelle and L. Hesselink, The topology of symmetric, second-order tensor fields. In Proceedings of IEEE Visualization 1994, pages 140–147. IEEE Computer Society Press, 1994.
[9] J. England, B. Krauskopf, and H. Osinga, Computing one-dimensional global manifolds of Poincar maps by continuation. SIAM Journal of Applied Dynamical Systems, 4 (4): 1008–1041, 2005.
[10] C. Garth, X. Tricoche, and G. Scheuermann, Tracking of vector field singularities in unstructured 3D time-dependent data sets. In Proceedings of IEEE Visualization 2004, pages 329–226, 2004.
[11] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.
[12] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann, Topology-based simplification for feature extraction from 3d scalar fields. In Proc. IEEE Visualization 2005, pages 275–280, 2005.
[13] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann, A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph., 12 (4): 474–484, 2006.
[14] A. Gyulassy, L. G. Nonato, P.-T. Bremer, C. T. Silva, and V. Pascucci, Robust topology-based multiscale analysis of scientific data. Computing in Science and Engineering, 11 (5): 88–95, 2009.
[15] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Springer-Verlag, 2006.
[16] G. Haller, Distinguished material surfaces and coherent structures in three-dimensional flows. Physica D, 149: 248–277, 2001.
[17] H. Hauser, H. Hagen, and H. Theisel, Topology Based Methods in Visualization. Springer, 2007.
[18] H.-C. Hege, K. Polthier, and G. Scheuermann, Topology Based Methods in Visualization II. Springer, 2009.
[19] J. Helman and L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11 (3): 36–46, 1991.
[20] J. L. Helman and L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11 (3): 36–46, May 1991.
[21] A. N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR, 98: 469, 1954.
[22] A. Lichtenberg and M. Lieberman, Regular and Stochastic Motion. Applied Mathematical Sciences. Springer Verlag, 1983.
[23] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. Springer-Verlag, New York, 1992.
[24] H. Löffelmann, H. Doleisch, and E. Gröller, Visualizing dynamical systems near critical points. In 14th Spring Conference on Computer Graphics, pages 175–184, 1998.
[25] H. Löffelmann and E. Gröller, Enhancing the visualization of characteristic structures in dynamical systems. In Visualization in Scientific Computing '98, pages 59–68, 1998.
[26] H. Löffelmann, T. Kucera, and E. Gröller, Visualizing Poincar maps together with the underlying flow. In H.-C. Hege, and K. Polthier editors, , Mathematical Visualization: Proceedings of the International Workshop on Visualization and Mathematics '97, pages 315–328. Springer, 1997.
[27] S. Mann and A. Rockwood, Computing singularities of 3d vector fields with geometric algebra. In IEEE Visualization Proceedings '03, 2003.
[28] J. Marsden and M. West, Discrete Mechanics and Variational Integrators. Acta Numerica, 2001.
[29] J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. Texts in Applied Mathematics vol. 17. Springer-Verlag, 2003.
[30] J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1,1, Kl (1): 1, 1962.
[31] I. Niven, Irrational Numbers. The mathematical association of America, 1956.
[32] A. Okada and D. L. Kao, Enhanced line integral convolution with flow feature detection. In Proceedings of IS&T/SPIE Electronic Imaging, 1997.
[33] R. Peikert and F. Sadlo, Visualization Methods for Vortex Rings and Vortex Breakdown Bubbles. In A.Y.K. Museth, T. Möller editor, Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis'07), pages 211–218, May 2007.
[34] R. Peikert, and F. Sadlo, Flow Topology Beyond Skeletons: Visualization of Features in Recirculating Flow. In H.-C. Hege, K. Polthier, and G. Scheuermann editors, Topology-Based Methods in Visualization II, pages 145–160. Springer, 2008.
[35] P. J. Prince, and J. R. Dormand, High order embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 7 (1), 1981.
[36] A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, and J. Bres-lau, Analysis of recurrent patterns in toroidal magnetic fields. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1431– 1440, 2010.
[37] A. Sanderson, X. Tricoche, C. Garth, S. Kruger, C. Sovinec, E. Held, and J. Breslau, Poster: A geometric approach to visualizing patterns in the Poincar plot of a magnetic field. In Proc. of IEEE Visualization 06 Conference, 2006.
[38] G. Scheuermann, H. Krger , M. Menzel, and A. P Rockwood, Visualizing nonlinear vector field topology. IEEE Trans. Vis. Comput. Graph., 4 (2): 109–116, 1998.
[39] C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger, and D. D. Schnack, Nimrod: A computational laboratory for studying nonlinear fusion magnetohydrodynamics. Phys. Plasmas, 10 (5): 1727, 2003.
[40] H. Theisel and H.-P. Seidel, Feature flow fields. In Proceedings of Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym '03), pages 141 – 148. ACM, 2003.
[41] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, Saddle connectors - an approach to visualizing the topological skeleton of complex 3d vector fields. In IEEE Visualization '03, 2003.
[42] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, Stream line and path line oriented topology. In Proceedings of IEEE Visualization '04 Conference, pages 321–328, 2004.
[43] X. Tricoche, C. Garth, and A. Sanderson, Visualizing invariant manifolds in area-preserving maps. In Proceedings of the Topology-Based Methods in Visualization 2011, 2011 (to appear).
[44] X. Tricoche, G. Scheuermann, and H. Hagen, A topology simplification method for 2D vector fields. In Proceedings of IEEE Visualization 2000, pages 359–366, 2000.
[45] X. Tricoche, T. Wischgoll, G. Scheuermannn, and H. Hagen, Topology tracking for the visualization of time-dependent two-dimensional flows. Computer and Graphics, 26: 249–257, 2002.
[46] G. Weber, P.-T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1416–1423, 2007.
[47] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel, Boundary switch connectors for topological visualization of complex 3d vector fields. In O. Deussen, C. Hansen, D. A. Keim, and D. Saupe editors, VisSym 2004 : Joint Eurographics/IEEE Symposium on Visualization, pages 183–192, Konstanz, Germany, 2004. Eurographics.
[48] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel, Topological structures in two-parameter-dependent 2D vector fields. Computer Graphics Forum, 25 (3): 607–616, September 2006. Eurographics 2006, Vienna, Austria, September 04 - 08.
[49] K. M.-K. Yip, KAM: A System for Intelligently Guiding Numerical Experimentation by Computer. MIT Press, 1992.
[50] E. Zhang, H. Yeh, Z. Lin, and R. Laramee, Asymmetric tensor analysis for flow visualization. IEEE Transactions on Visualization and Computer Graphics, 15 (1): 106–122, 2009.
[51] X. Zheng and A. Pang, 2d asymmetric tensor analysis. In Proc. of IEEE Visualization 2005, pages3–10. IEEE Computer Society Press, Oct. 2005.
[52] X. Zheng, B. Parlett, and A. Pang, Topological lines in 3D tensor fields and discriminant hessian factorization. IEEE Transactions on Visualization and Computer Graphics, 11 (4): 395–407, 2005.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool