The Community for Technology Leaders
Green Image
Issue No. 02 - February (2011 vol. 17)
ISSN: 1077-2626
pp: 146-158
Glenn Lupton , Hewlett-Packard USA, Hollis
Tamás Umenhoffer , Budapest University of Technology and Economics, Magyar Tudósok
Gábor Liktor , Budapest University of Technology and Economics, Magyar Tudósok
László Szirmay-Kalos , Budapest University of Technology and Economics, Magyar Tudósok
Balázs Tóth , Budapest University of Technology and Economics, Magyar Tudósok
Shree Kumar , Hewlett-Packard India Software Operations, Bangalore
This paper presents a fast parallel method to solve the radiative transport equation in inhomogeneous participating media. We apply a novel approximation scheme to find a good initial guess for both the direct and scattered components. Then, the initial approximation is used to bootstrap an iterative multiple scattering solver, i.e., we let the iteration concentrate just on the residual problem. This kind of bootstrapping makes the volumetric source approximation more uniform, thus it helps to reduce the discretization artifacts and improves the efficiency of the parallel implementation. The iterative refinement is executed on a face-centered cubic grid. The implementation is based on CUDA and runs on the GPU. For large volumes that do not fit into the GPU memory, we also consider the implementation on a GPU cluster, where the volume is decomposed to blocks according to the available GPU nodes. We show how the communication bottleneck can be avoided in the cluster implementation by not exchanging the boundary conditions in every iteration step. In addition to light photons, we also discuss the generalization of the method to \gamma-photons that are relevant in medical simulation.
Radiative transport equation, multiple scattering, diffusion approximation, FCC grid, parallel computation, Monte Carlo method, iteration, GPU, CUDA.
Glenn Lupton, Tamás Umenhoffer, Gábor Liktor, László Szirmay-Kalos, Balázs Tóth, Shree Kumar, "Parallel Iteration to the Radiative Transport in Inhomogeneous Media with Bootstrapping", IEEE Transactions on Visualization & Computer Graphics, vol. 17, no. , pp. 146-158, February 2011, doi:10.1109/TVCG.2010.97
103 ms
(Ver 3.1 (10032016))