The Community for Technology Leaders
Green Image
Issue No. 06 - November/December (2010 vol. 16)
ISSN: 1077-2626
pp: 1578-1586
Stéphane Marchesin , Univ. of California, Davis, CA, USA
Cheng-Kai Chen , Univ. of California, Davis, CA, USA
Chris Ho , Univ. of California, Davis, CA, USA
Kwan-Liu Ma , Univ. of California, Davis, CA, USA
This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention.
Three dimensional displays, Streaming media, Entropy, Measurement, Visualization, Rendering (computer graphics)

S. Marchesin, Cheng-Kai Chen, C. Ho and Kwan-Liu Ma, "View-Dependent Streamlines for 3D Vector Fields," in IEEE Transactions on Visualization & Computer Graphics, vol. 16, no. 6, pp. 1578-1586, 2010.
307 ms
(Ver 3.3 (11022016))