The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2010 vol.16)
pp: 1551-1559
Interactivity is key to exploration of volume data. Interactivity may be hindered due to many factors, e.g. large data size,high resolution or complexity of a data set, or an expensive rendering algorithm. We present a novel framework for visualizing volumedata that enables interactive exploration using proxy images, without accessing the original 3D data. Data exploration using directvolume rendering requires multiple (often redundant) accesses to possibly large amounts of data. The notion of visualization by proxyrelies on the ability to defer operations traditionally used for exploring 3D data to a more suitable intermediate representation forinteraction - proxy images. Such operations include view changes, transfer function exploration, and relighting. While previous workhas addressed specific interaction needs, we provide a complete solution that enables real-time interaction with large data sets andhas low hardware and storage requirements.
volume visualization, deferred interaction, image-based rendering, volume distortion camera
Anna Tikhonova, Carlos D. Correa, Kwan-Liu Ma, "Visualization by Proxy: A Novel Framework for Deferred Interaction with Volume Data", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1551-1559, November/December 2010, doi:10.1109/TVCG.2010.215
[1] J. Choi and Y. Shin, Efficient image-based rendering of volume data. In Proc. of Pacific Conference on Computer Graphics and Applications, page 70, 1998.
[2] C. Donner and H. W. Jensen, Light diffusion in multi-layered translucent materials. In Proc. of SIGGRAPH, pages 1032–1039, 2005.
[3] C. Donner, T. Weyrich, E. d'Eon, R. Ramamoorthi, and S. Rusinkiewicz, A layered, heterogeneous reflectance model for acquiring and rendering human skin. In Proc. of SIGGRAPH Asia, pages 1–12, 2008.
[4] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The lumigraph. In Proc. of SIGGRAPH, pages 43–54, 1996.
[5] R. Gupta and R. I. Hartley, Linear pushbroom cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (9): 963–975, 1997.
[6] T. He, L. Hong, Kaufman, and H. Pfister, Generation of transfer functions with stochastic search techniques. In Proc. of Visualization, pages 227–ff., 1996.
[7] S. B. Kang, A survey of image-based rendering techniques. In Proc. of Videometrics, SPIE, pages 2–16, 1999.
[8] E. LaMar and V. Pascucci, A multi-layered image cache for scientific visualization. In Proc. of IEEE Symposium on Parallel and Large-Data Visualization and Graphics, pages 61–68, 2003.
[9] M. Levoy and P. Hanrahan, Light field rendering. In Proc. of SIGGRAPH, pages 31–42, 1996.
[10] T. Luft, C. Colditz, and O. Deussen, Image enhancement by unsharp masking the depth buffer. ACM Transactions on Graphics, 25 (3): 1206–1213, 2006.
[11] E. J. Luke and C. D. Hansen, Semotus Visum: a flexible remote visualization framework. In Proc. of Visualization, pages 61–68, 2002.
[12] K.-L. Ma, M. F. Cohen, and J. S. Painter, Volume seeds: A volume exploration technique. Computer Graphics and Visualization, 2: 135–140, 1991.
[13] M. M. Malik, T. Möller, and M. E. Gröller, Feature peeling. In Proc. of Graphics Interface, pages 273–280, 2007.
[14] W. R. Mark, L. McMillan, and G. Bishop, Post-rendering 3d warping. In In Proc. of Interactive 3D Graphics and Games Symposium, pages 7–ff., 1997.
[15] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, Design galleries: a general approach to setting parameters for computer graphics and animation. In Proc. of SIGGRAPH, pages 389–400, 1997.
[16] N. Max, Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1 (2): 99–108, 1995.
[17] L. McMillan and G. Bishop, Plenoptic modeling: an image-based rendering system. In Proc. of SIGGRAPH, pages 39–46, 1995.
[18] C. Mei, V. Popescu, and E. Sacks, The occlusion camera. 24 (3): 335–342, 2005.
[19] T. Pajdla, Geometry of two-slit camera, 2002.
[20] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S. Avila, K. Martin, R. Machiraju, and J. Lee, The transfer function bake-off. IEEE Computer Graphics and Applications, 21 (3): 16–22, 2001.
[21] V. Popescu and D. G. Aliaga, The depth discontinuity occlusion camera. In Proc. of Interactive 3D Graphics and Games Symposium, pages 139–143, 2006.
[22] V. Popescu, P. Rosen, L. L. Arns, X. Tricoche, C. Wyman, and C. Hoffmann, The general pinhole camera: effective and efficient non-uniform sampling for visualization. IEEE Transactions on Visualization and Computer Graphics, 99 (1), 2010.
[23] P. Rademacher and G. Bishop, Multiple-center-of-projection images. In Proc. of SIGGRAPH, pages 199–206, 1998.
[24] P. Rautek, S. Bruckner, and M. E. Groller, Semantic layers for illustrative volume rendering. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1336–1343, 2007.
[25] C. Rezk-Salama and A. Kolb, Opacity peeling for direct volume rendering. Computer Graphics Forum, 25 (3): 597–606, 2006.
[26] T. Ropinski, J.-S. Prassni, F. Steinicke, and K. H. Hinrichs, Stroke-based transfer function design. In Proc. of IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 41–48, 2008.
[27] J. Shade, S. Gortler, L. wei He, and R. Szeliski, Layered depth images. In Proc. of SIGGRAPH, volume 1, pages 231–242, 1998.
[28] N. Shareef, T.-Y Lee, H.-W. Shen, and K. Mueller, An image-based modeling approach to gpu-based unstructured grid volume rendering. In Proc. of Volume Graphics, pages 31–38, 2006.
[29] V. Srivastava, U. Chebrolu, and K. Mueller, Interactive transfer function modification for volume rendering using compressed sample runs. In Proc. of Computer Graphics International Conference, pages 8–13, 2003.
[30] A. Tikhonova, C. D. Correa, and K.-L. Ma, Explorable images for visualizing volume data. In Proc. of IEEE Pacific Visualization Symposium, pages 177–184, 2010.
[31] A. Tikhonova, C. D. Correa, and K.-L. Ma, An exploratory technique for coherent visualization of time-varying volume data. Computer Graphics Forum, 29 (3): 783–792, 2010.
[32] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin, Multiperspective panoramas for cel animation. In Proc. of SIGGRAPH, pages 243–250, 1997.
[33] Y. Wu and H. Qu, Interactive transfer function design based on editing direct volume rendered images. IEEE Transactions on Visualization and Computer Graphics, 13 (5): 1027–1040, 2007.
[34] J. Yu and L. McMillan, A framework for multiperspective rendering. In Proc. of Eurographics Symposium on Rendering, pages 61–68, 2004.
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool