The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2010 vol.16)
pp: 1477-1486
Artem Amirkhanov , Institute of Computer Graphics and Algorithms, Vienna University of Technology
Christoph Heinzl , Upper Austrian University of Applied Sciences, Wels Campus
Michael Reiter , Upper Austrian University of Applied Sciences, Wels Campus
Eduard Gröller , Institute of Computer Graphics and Algorithms, Vienna University of Technology
Industrial cone-beam X-Ray computed tomography (CT) systems often face problems due to artifacts caused by a bad placement of the specimen on the rotary plate. This paper presents a visual-analysis tool for CT systems, which provides a simulation-based preview and estimates artifacts and deviations of a specimen's placement using the corresponding 3D geometrical surface model as input. The presented tool identifies potentially good or bad placements of a specimen and regions of a specimen, which cause the major portion of artefacts. The tool can be used for a preliminary analysis of the specimen before CT scanning, in order to determine the optimal way of placing the object. The analysis includes: penetration lengths, placement stability and an investigation in Radon space. Novel visualization techniques are applied to the simulation data. A stability widget is presented for determining the placement parameters' robustness. The performance and the comparison of results provided by the tool compared with real world data is demonstrated using two specimens.
Industrial 3DCT, simulation, Radon-space analysis, stability analysis, penetration-length analysis
Artem Amirkhanov, Christoph Heinzl, Michael Reiter, Eduard Gröller, "Visual Optimality and Stability Analysis of 3DCT Scan Positions", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1477-1486, November/December 2010, doi:10.1109/TVCG.2010.214
[1] J. F. Barrett and K. Nicholas, Artifacts in CT: Recognition and avoidance. Radiographics ISSN 0271–5333, vol. 24 (6): 1679–91, 11 2004.
[2] U. D. Bordoloi and H.-W. Shen, View Selection for Volume Rendering. Visualization Conference, IEEE, 2005.
[3] L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm. J. Opt. Soc. Am. A, 1 (6): 612–619, June 1984.
[4] N. Freud, J.-M. Létang, and D. Babot, A hybrid approach to simulate multiple photon scattering in X-ray imaging, Nuclear Instruments and Methods in Physics Research. Elsevier, Amsterdam, PAYS-BAS (1984) (Revue), 2005.
[5] C. Heinzl, Analysis and Visualization of Industrial CT Data. PhD thesis, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9–11/186, A-1040 Vienna, Austria, 12 2009.
[6] J. Hsieh, Computed Tomography: Principles, Design, Artifacts and Recent Advances. SPIE Press, 2 2003.
[7] G.-R. Jaenisch, C. Bellon, U. Samadurau, M. Zhukovskiy, and S. Podoliako, A Monte Carlo Model Coupled to CAD for Radiation Techniques. European Conference for NDT2006, 2006.
[8] S. Kasperl, Qualitätsverbesserungen durch referenzfreie Artefak-treduzierung und Oberflächennormierung in der industriellen 3D-Computertomographie. PhD thesis, Technische Fakultät der Universitat Erlangen Nürnberg, 2005.
[9] M. M. Malik, C. Heinzl, and M. E. Gröller, Comparative Visualization for Parameter Studies of Dataset Series. IEEE Transactions on Visualization and Computer Graphics, 99, 2010.
[10] M. Mantler, B. Chyba, and M. Reiter, McRay - A Monte Carlo Simulation of Projections in Computed Tomography. Denver X-ray Conference 2007, Denver (US), 7–8 2007.
[11] K. Mühler, M. Neugebauer, C. Tietjen, and B. Preim, Viewpoint Selection for Intervention Planning. In K. Museth, T. Möller, and A. Ynnerman editors, Euro Vis, pages 267–274. Eurographics Association, 2007.
[12] NVIDIA. CUDA Programming Guide 2.3, 2009.
[13] S. Owada, F. Nielsen, and T. Igarashi, Volume catcher. In I3D `05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, pages 111–116, New York, NY, USA, 2005. ACM.
[14] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, Stackless kd-tree traversal for high performance GPU ray tracing. Computer Graphics Forum, 26 (3): 415–424, Sept. 2007. (Proceedings of Eurographics).
[15] J. Radon, Üeber die Bestimmng von Funktionen durch Ihre Integralwerte laengs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften, 1917.
[16] M. Reiter, M. M. Malik, C. Heinzl, D. Salaberger, M. E. Gröller, H. Let-tenbauer, and J. Kastner, Improvement of X-Ray image acquisition using a GPU based 3DCT simulation tool. In International Conference on Quality Control by Artificial Vision, 5 2009. not peer reviewed, will appear.
[17] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, Third Edition. Kitware Inc., 2007.
[18] B. D. Smith, Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods. IEEE Trans Med Imaging, 4 (1): 14–25, 1985.
[19] J. Tabary, R. Guillemaud, F. Mathy, A. Gliére, and P. Hugonnard, Combination of high resolution analytically computed uncollided flux images with low resolution Monte-Carlo computed scattered flux images. Proc. IEEE-MIC, Norfolk, pages 551–558, 11 2002.
[20] S. Takahashi and Y. Takeshima, A Feature-Driven Approach to Locating Optimal Viewpoints for Volume Visualization. In In IEEE Visualization, pages 495–502. IEEE Press, 2005.
[21] M. Tory and C. Swindells, Comparing ExoVis, Orientation Icon, and In-Place 3D Visualization Techniques. In Graphics Interface 03, pages 57–64, 2003.
[22] H. K. Tuy, An Inversion Formula for Cone-Beam Reconstruction. SIAM Journal on Applied Mathematics, 43 (3): 546–552, 1983.
[23] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, Viewpoint Selection using Viewpoint Entropy. In VMV `01: Proceedings of the Vision Modeling and Visualization Conference 2001, pages 273–280, 2001.
[24] I. Viola, M. Feixas, M. Sbert, and M. E. Gröller, Importance-Driven Focus of Attention. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 933–940, Oct. 2006.
[25] L. Zhu, J. Starman, and R. Fahrig, An Efficient Estimation Method for Reducing the Axial Intensity Drop in Circular Cone-Beam CT. International Journal of Biomedical Imaging, vol. 2008, 8 2008.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool