The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2010 vol.16)
pp: 908-917
Cells in an organism share the same genetic information in their DNA, but have very different forms and behavior becauseof the selective expression of subsets of their genes. The widely used approach of measuring gene expression over time froma tissue sample using techniques such as microarrays or sequencing do not provide information about the spatial position withinthe tissue where these genes are expressed. In contrast, we are working with biologists who use techniques that measure geneexpression in every individual cell of entire fruitfly embryos over an hour of their development, and do so for multiple closely-relatedsubspecies of Drosophila. These scientists are faced with the challenge of integrating temporal gene expression data with the spatiallocation of cells and, moreover, comparing this data across multiple related species. We have worked with these biologists overthe past two years to develop MulteeSum, a visualization system that supports inspection and curation of data sets showing geneexpression over time, in conjunction with the spatial location of the cells where the genes are expressed — it is the first tool tosupport comparisons across multiple such data sets. MulteeSum is part of a general and flexible framework we developed with ourcollaborators that is built around multiple summaries for each cell, allowing the biologists to explore the results of computations thatmix spatial information, gene expression measurements over time, and data from multiple related species or organisms. We justifyour design decisions based on specific descriptions of the analysis needs of our collaborators, and provide anecdotal evidence of theefficacy of MulteeSum through a series of case studies.
spatial data, temporal data, gene expression
Miriah Meyer, Tamara Munzner, Angela DePace, Hanspeter Pfister, "MulteeSum: A Tool for Comparative Spatial and Temporal Gene Expression Data", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 908-917, November/December 2010, doi:10.1109/TVCG.2010.137
[1] Berkley Drosophila Transcription Network Project.http:/, accessed March 15, 2010.
[2] C. Brewer http:/, accessed March 15, 2010.
[3] S. B. Carroll, J. K. Grenier, and S. D. Weatherbee, From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, 2001.
[4] W. S. Cleveland and R. McGill, Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79 (387): 531–554, 1984.
[5] A. DePace et al. Quantitative comparison of anterior posterior patterning in closely related Drosophila. In progress.
[6] Drosophila 12 Genomes Consortium et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450 (7167): 203–18, Nov 2007.
[7] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns. Proc. National Academy of Sciences, 95 (25): 14863–14868, 1998.
[8] C. Fowlkes, C. Hendriks, S. Keränen, G. Weber, O. Rübel, M. Huang, S. Chatoor, A. DePace, L. Simirenko, C. Henriquez, A. Beaton, R. Weisz-mann, S. Celniker, B. Hamann, D. Knowles, M. Biggin, M. Eisen, and J. Malik, A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell, 133 (2): 364–374, 2008.
[9] N. Gehlenborg, S. I. O'Donoghue, N. S. Baliga, A. Goesmann, M. A. Hibbs, H. Kitano, O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenen-baum, and A.-C. Gavin, Visualization of omics data for systems biology. Nature Methods, 7: S56–S68, 2010.
[10] S. Gerber, T. Tasdizen, and R. Whitaker, Dimensionality reduction and principal surfaces via kernel map manifolds. Proc. Intl. Conf. Computer Vision (ICCV), 2009.
[11] J. Heer and M. Agrawala, Software design patterns for information visualization. IEEE Trans. Visualization and Computer Graphics (TVCG), 12 (5), 2006.
[12] C. L. L. Hendriks, S. V. E. Keranen, C. C. Fowlkes, L. Simirenko, G. H. Weber, A. H. DePace, C. Henriquez, D. W Kaszuba, B. Hamann, M. B. Eisen, J. Malik, D. Sudar, M. D. Biggin, and D. W Knowles, Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution 1: data acquisition pipeline. Genome Biol, 7 (12): R123, Jan 2006.
[13] T. B. Kornberg and T. Tabata, Segmentation of the Drosophila embryo. Current Opinion in Genetics & Development, 3 (4): 585–94, Aug 1993.
[14] H. Lam, T. Munzner, and R. Kincaid, Overview use in multiple visual information resolution interfaces. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2007), 13 (6): 1278–1285, 2007.
[15] C. Lau, L. Ng, C. Thompson, S. Pathak, L. Kuan, A. Jones, and M. Hawrylycz, Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics, 9 (1): 153, 2008.
[16] M. Meyer, T. Munzner, and H. Pfister, MizBee: A multiscale synteny browser. IEEE Trans. Visualization and Computer Graphics (Proc. Info-Vis 2009), 15 (6): 897–904, 2009.
[17] M. Meyer, B. Wong, M. Styczynski, T. Munzner, and H. Pfister, Pathline: A tool for comparative functional genomics. Computer Graphics Forum (Proc. EuroVis 10), 29 (3), 2010.
[18] C. Reas, B. Fry, and J. Maeda, Processing: A Programming Handbook for Visual Designers and Artists. MIT Press, 2007.
[19] J. C. Roberts, State of the art: Coordinated & multiple views in exploratory visualization. In Proc. Intl. Conf. on Coordinated and Multiple Views in Exploratory Visualization (CMV), pages 61–71. IEEE Computer Society, 2007.
[20] O. Rübel, G. H. Weber, M.-Y. Huang, E. W Bethel, M. D. Biggin, C. C. Fowlkes, C. L. Luengo Hendriks, S. V. E. Keranen, M. B. Eisen, D. W. Knowles, J. Malik, H. Hagen, and B. Hamann, Integrating data clustering and visualization for the analysis of 3D gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 7 (1): 64–79, 2010.
[21] O. Rübel, G. H. Weber, S. V. E. Keränen, C. C. Fowlkes, C. L. L. Hendriks, L. Simirenko, N. Y. Shah, M. B. Eisen, M. D. Biggin, H. Hagen, D. Sudar, J. Malik, D. W Knowles, and B. Hamann, PointCloudXplore: Visual analysis of 3D gene expression data using physical views and parallel coordinates. In Proc. Eurographics/IEEE Symp. Visualization (Eu-roVis), pages 203-210. Eurographics Association, 2006.
[22] A. J. Saldanha, Java Treeview - extensible visualization of microarray data. Bioinformatics, 20 (17): 3246–3248, 2004.
[23] J. Seo and B. Shneiderman, Interactively exploring hierarchical clustering results Computer, 35 (7): 80–86, 2002.
[24] B. Shneiderman, The eyes have it: A task by data type taxonomy for information visualizations In Proc. IEEE Symp. Visual Languages (VL), page 336, Washington, DC, USA, 1996. IEEE Computer Society.
[25] G. H. Weber, O. Rübel, M.-Y. Huang, A. H. DePace, C. C. Fowlkes, S. V. E. Keranen, C. L. Luengo Hendriks, H. Hagen, D. W Knowles, J. Malik, M. D. Biggin, and B. Hamann, Visual exploration of three-dimensional gene expression using physical views and linked abstract views. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 6 (2): 296–309, 2009.
[26] J. N. Weinstein, A postgenomic visual icon Science, 319 (5871): 1772–1773, March 2008.
[27] W. Willett, J. Heer, and M. Agrawala, Scented widgets: Improving navigation cues with embedded visualizations IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1129–1136, 2007.
115 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool