The Community for Technology Leaders
RSS Icon
Issue No.02 - March/April (2010 vol.16)
pp: 338-349
Fabiano Petronetto , Universidad Federal do Espírito Santo, Brazil
Afonso Paiva , Universidade Federal de Uberlândia, Minas Gerais
Marcos Lage , PUC-Rio, Rio de Janeiro
Geovan Tavares , PUC-Rio, Rio de Janeiro
Hélio Lopes , PUC-Rio, Rio de Janeiro
Thomas Lewiner , PUC-Rio, Rio de Janeiro
Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.
Helmholtz-Hodge decomposition, smoothed particles hydrodynamics, vector field, features visualization, multiphase fluids, incompressible flow.
Fabiano Petronetto, Afonso Paiva, Marcos Lage, Geovan Tavares, Hélio Lopes, Thomas Lewiner, "Meshless Helmholtz-Hodge Decomposition", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 2, pp. 338-349, March/April 2010, doi:10.1109/TVCG.2009.61
[1] Y. Tong, S. Lombeyda, A.N. Hirani, and M. Desbrun, “Discrete Multiscale Vector Field Decomposition,” ACM Trans. Graphics, vol. 22, no. 3, pp. 445-452, 2003.
[2] A. Cuzol, P. Hellier, and E. Mémin, “A Low Dimensional Fluid Motion Estimator,” Int'l J. Computer Vision, vol. 75, no. 3, pp. 329-349, 2007.
[3] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH, pp. 121-128, 1999.
[4] K. Polthier and E. Preuss, “Variational Approach to Vector Field Decomposition,” Proc. Eurographics Workshop Scientific Visualization, 2000.
[5] K. Polthier and E. Preuss, “Identifying Vector Fields Singularities Using a Discrete Hodge Decomposition,” Visualization and Mathematics III, pp. 113-134, Springer, 2003.
[6] Q. Guo, M.K. Mandal, and M.Y. Li, “Efficient Hodge-Helmholtz Decomposition of Motion Fields,” Pattern Recognition Letters, vol. 26, no. 4, pp. 493-501, 2005.
[7] S.J. Cummins and M. Rudman, “An SPH Projection Method,” J.Computational Physics, vol. 152, no. 2, pp. 584-607, 1999.
[8] F. Colin, R. Egli, and F.Y. Lin, “Computing a Null Divergence Velocity Field Using Smoothed Particle Hydrodynamics,” J.Computational Physics, vol. 217, no. 2, pp. 680-692, 2006.
[9] A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics. Springer, 1992.
[10] G.R. Liu and M.B. Liu, Smoothed Particle Hydrodynamics. World Science, 2005.
[11] M. Müller, D. Charypar, and M. Gross, “Particle-Based Fluid Simulation for Interactive Applications,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 154-159, 2003.
[12] J.J. Monaghan, “Smoothed Particle Hydrodynamics,” Reports on Progress in Physics, vol. 68, pp. 1703-1759, 2005.
[13] F. Petronetto, “Equação de Poisson e a Decomposição de Helmholtz-Hodge usando SPH,” PhD dissertation, PUC-Rio, 2008.
[14] S. Li and W.K. Liu, Meshfree Particle Methods. Springer, 2004.
[15] D. Dunbar and G. Humphreys, “A Spatial Data Structure for Fast Poisson-Disk Sample Generation,” Proc. ACM SIGGRAPH, pp.503-508, 2006.
[16] M. Lage, F. Petronetto, A. Paiva, H. Lopes, T. Lewiner, and G. Tavares, “Vector Field Reconstruction from Sparse Samples with Applications,” Proc. Brazilian Symp. Computer Graphics and Image Processing (SIBGRAPI '06), pp. 297-304, 2006.
[17] R. Pozo and K. Remington, SparseLib++ Sparse Matrix Class Library, http://math.nist.govsparselib++, 2009.
[18] J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington, IML++ Iterative Methods Library, http://math.nist.goviml++, 1996.
[19] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[20] A. Hoerl, and R. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
[21] J. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,” Computer, vol. 22, no. 8, pp. 27-36, Aug. 1989.
[22] G. Chen, K. Mischaikow, R.S. Laramee, and E. Zhang, “Efficient Morse Decompositions of Vector Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 848-862, July/Aug. 2008.
[23] X. Tricoche, G. Scheuermann, and H. Hagen, “Continuous Topology Simplification of Planar Vector Fields,” Proc. 12th IEEE Conf. Visualization, pp. 159-166, 2001,
[24] C. Diaz-Goano, P.D. Minev, and K. Nandakumar, “A Fictitious Domain/Finite Element Method for Particulate Flows,” J. Computational Physics, vol. 192, no. 1, pp. 105-123, 2003.
[25] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for Procedural Fluid Flow,” ACM Trans. Graphics, vol. 26, no. 3, 2007.
[26] M. Becker and M. Teschner, “Weakly Compressible SPH for Free Surface Flows,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 209-217, 2007.
[27] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross, “A Unified Lagrangian Approach to Solid-Fluid Animation,” Proc. Eurographics/IEEE VGTC Symp. Point-Based Graphics, pp. 125-134, 2005.
[28] M. Müller, B. Solenthaler, R. Keiser, and M. Gross, “Particle-Based Fluid-Fluid Interaction,” Proc. ACM SIGGRAPH '05 Symp. Computer Animation, pp. 237-244, 2005.
[29] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “Particle-Based Non-Newtonian Fluid Animation for Melting Objects,” Proc. Brazilian Symp. Computer Graphics and Image Processing (SIBGRAPI '06), pp. 78-85, 2006.
7 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool