The Community for Technology Leaders
Green Image
Issue No. 06 - November/December (2009 vol. 15)
ISSN: 1077-2626
pp: 1555-1562
David M. Hughes , School of Computer Science, Bangor University, UK
Ik Soo Lim , Computer Science, Bangor University, UK
Stackless traversal techniques are often used to circumvent memory bottlenecks by avoiding a stack and replacing return traversal with extra computation. This paper addresses whether the stackless traversal approaches are useful on newer hardware and technology (such as CUDA). To this end, we present a novel stackless approach for implicit kd-trees, which exploits the benefits of index-based node traversal, without incurring extra node visitation. This approach, which we term Kd-Jump, enables the traversal to immediately return to the next valid node, like a stack, without incurring extra node visitation (kd-restart). Also, Kd-Jump does not require global memor y (stack) at all and only requires a small matrix in fast constant-memory. We report that Kd-Jump outperforms a stack by 10 to 20% and kd-restar t by 100%. We also present a Hybrid Kd-Jump, which utilizes a volume stepper for leaf testing and a run-time depth threshold to define where kd-tree traversal stops and volume-stepping occurs. By using both methods, we gain the benefits of empty space removal, fast texture-caching and realtime ability to determine the best threshold for current isosurface and view direction.
Raytracing, isosurface, GPU, parallel computing, volume visualization

I. S. Lim and D. M. Hughes, "Kd-Jump: a Path-Preserving Stackless Traversal for Faster Isosurface Raytracing on GPUs," in IEEE Transactions on Visualization & Computer Graphics, vol. 15, no. , pp. 1555-1562, 2009.
91 ms
(Ver 3.3 (11022016))