The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2009 vol.15)
pp: 1415-1424
Gordon L. Kindlmann , Department of Computer Science and the Computation Institute, University of Chicagoimplemented in a straight-forward manner at the level of individual
Raúl San José Estépar , Department of Radiology, Brigham and Women’s Hospital, Harvard Medical Schoolborhood of particles and data values. Particles also enjoy the property
Stephen M. Smith , Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford Universityundue influence. Our work leverages these properties while it extends
Carl-Fredrik Westin , Department of Radiology, Brigham and Women’s Hospital, Harvard Medical Schoolborhood of particles and data values. Particles also enjoy the property
Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys, as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers an n-D image as an (n + 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI.
Particle Systems, Crease Features, Ridge and Valley Detection, Lung CT, Diffusion Tensor MRI
Gordon L. Kindlmann, Raúl San José Estépar, Stephen M. Smith, Carl-Fredrik Westin, "Sampling and Visualizing Creases with Scale-Space Particles", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1415-1424, November/December 2009, doi:10.1109/TVCG.2009.177
[1] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56 (2): 411-421, August 2006.
[2] S. Aylward, E. Bullitt, S. Pizer, and D. Eberly, Intensity ridge and widths for tubular object segmentation and description. In Proc. Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pages 131-138, 1996.
[3] S. R. Aylward and E. Bullitt, Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans, on Medical Imaging, 21 (2): 61-75, Feb 2002.
[4] P. Basser, I. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging. Biophysics Journal, 66 (l): 259-267, 1994.
[5] P. I. Basser, S. Pajevic, C. Pierpaoli, I. Duda, and A. Aldroubi, In vivo fiber tractograpy using DT-MRI data. Magnetic Resonance in Medicine, 44: 625-632, 2000.
[6] D. Bauer and R. Peikert, Vortex tracking in scale-space. In Proc. IEEE TVCG/EG Symposium on Visualization, pages 140-147, 2002.
[7] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system - A technical review. Nuclear Magnetic Resonance in Biomedicine, 15: 435-455, 2002.
[8] F. I. Bossen and P. S. Heckbert, A pliant method for anisotropic mesh generation. In Proc. 5th Intl. Meshing Roundtable, pages 63-74, 1996.
[9] S. Burgeth, S. Didas, L. Florack, and I. Weickert, A generic approach to diffusion filtering of matrix-fields. Computing, 81 (2—3): 179—197, Nov 2007.
[10] S. Busking, A. V. Bartroli, and I. I. van Wijk, Particle-based non-photorealistic volume visualization. The Visual Computer, 24: 335-346, 2007.
[11] I. Cates, P. Fletcher, M. Styner, M. Shenton, and R. Whitaker, Shape modeling and analysis with entropy-based particle systems. In Proc. IPMI 2007, volume 4584 of Lecture Notes in Computer Science, page 333. Springer, 2007.
[12] I. Cates, M. Meyer, P. T. Fletcher, and R. Whitaker, Entropy-based particle systems for shape correspondence. In Proc. Workshop on Mathematical Foundations of Computational Anatomy (MICCAI), pages 90-99, 2006.
[13] C. Chefd'hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for constrained matrix-valued images. Journal of Mathematical Imaging and Vision, 20 (l-2): 147-162, 2004.
[14] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, I. S. Shimony, R. C. McKinstry, H. Burton, and M. E. Raichle, Tracking neuronal fiber pathways in the living human brain. Proc. National Academy of Sciences, 96: 10422-10427, August 1999.
[15] P. Crossno and E. Angel, Isosurface extraction using particle systems. In Proc. IEEE Visualization, pages 495-498, 1997.
[16] D. Eberly, Ridges in Image and Data Analysis. Kluwer Academic Publishers, 1996.
[17] D. Eberly, R. Gardner, B. Morse, and S. Pizer, Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4 (4): 353-373, 1994.
[18] M. Fidrich, Iso-surface extraction in 4D with applications related to scale space. Technical Report 2833, Institut National de Recharche en Informatique et en Automatique (Sophia-Antipolis), March 1996.
[19] L. M. I. Florack and L. I. Astola, A multi-resolution framework for diffusion tensor images. In Proc. CVPR Workshop on Tensors in Image Processing and Computer Vision, pages 1-7. IEEE, June 2008.
[20] L. M. I. Florack, B. M. ter Haar Romeny, I. I. Koenderink, and M. A. Viergever, Scale and the differential structure of images. Image and Vision Computing, 10 (6): 376-388, 1992. Special issue: Information Processing in Medical Imaging 1991.
[21] L. M. I. Florack, B. M. ter Haar Romeny, I. I. Koenderink, and M. A. Viergever, Linear scale-space. Journal of Mathematical Imaging and Vision, 4 (4): 325-351, December 1994.
[22] A. F. Frangi, W. I. Niessen, R. M. Hoogeveen, T. van Walsum, and M. A. Viergever, Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans, on Medical Imaging, 18 (10): 946-956, 1999.
[23] I. D. Furst, S. M. Pizer, and D. H. Eberly, Marching cores: A method for extracting cores from 3D medical images. In Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 124-130, June 1996.
[24] I. M. Gauch and S. M. Pizer, Multiresolution analysis of ridges and val leys in grey-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (6): 635-646, June 1993.
[25] R. Gonzalez and R. Woods, Digital Image Processing. Addison-Wesley Publishing Company, Reading, MA, 2nd edition, 2002.
[26] C. Goodlett, B. Davis, R. Jean, J. H. Gilmore, and G. Gerig, Improved correspondence for DTI population studies via unbiased atlas building. In Proceedings MICCAI 2006, Lecture Notes in Computer Science 4190, pages 260-267, Copenhagen, Denmark, October 2006.
[27] P. Heckbert, Fast surface particle repulsion. In ACM SIGGRAPH 1997 Course Notes (New Frontiers in Modeling and Texturing), pages 95-114, August 1997.
[28] J. C. Hogg, F. Chu, S. Utokaparch, R. Woods, W M. Elliott, L. Buzatu, R. M. Cherniack, R. M. Rogersa, F. C. Sciurba, H. O. Coxson, and P. D. Par'e, The nature of small-airway obstruction in chronic obstructive pulmonary disease. New England Journal of Medicine, 350 (26): 2645-2653, June 2004.
[29] A. C. Jalba, M. H. F. Wilkinson, and J. B. T. M. Roerdink, CPM: A deformable model for shape recovery and segmentation based on charged particles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (10): 1320-1335, 2004.
[30] X. Jiao and P. Alexander, Parallel feature-preserving mesh smoothing. In Proc. Int. Conf. Comput. Sci. Appl, pages 1180-1189, 2005.
[31] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour model. International Journal of Computer Vision, 1 (4): 321-331, January 1988.
[32] G. Kindlmann, Superquadric tensor glyphs. In Proc. IEEE TVCG/EG Symposium on Visualization, pages 147-154, May 2004.
[33] G. Kindlmann, X. Tricoche, and C.-F. Westin, Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Medical Image Analysis, ll (5): 492-502, October 2007.
[34] T. Klein and T. Ertl, Scale-space tracking of critical points in 3D vector fields. In Proc. Workshop on Topology-Based Methods in Visualization, pages 35-49, 2005.
[35] J. J. Koenderink and A. J. van Doom, The structure of images. Biological Cybernetics, 50: 363-370, 1984.
[36] M. Kubicki, R. McCarley, C.-F. Westin, H.-J. Park, S. Maier, R. Kikinis, F. A. Jolesz, and M. E. Shenton, A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41: 15-30, 2007.
[37] D. LeBihan, Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4 (6): 469-480, June 2003.
[38] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. Journal of Mathematical Imaging and Vision, 25 (3): 423-444, 2006.
[39] T. Lindeberg, Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (3): 234-254, March 1990.
[40] T. Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21 (2): 224-270, 1994.
[41] T. Lindeberg, Edge detection and ridge detection with automatic scale selection. In Proceedings CVPR 1996, pages 465-470, June 1996.
[42] L. Linsen, T. V. Long, P. Rosenthal, and S. Rosswog, Surface extraction from multi-field particle volume data using multi-dimensional cluster visualization. IEEE Trans, on Visualization and Computer Graphics, 14 (6): 1483-1490, 2008.
[43] A. M. Lopez, D. LLoret, and J. Serrat, Creaseness measures for CT and MR image registration. In Proceedings CVPR, pages 694-699, June 1998.
[44] W E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics, 21 (4): 163-169, 1987.
[45] M. Meyer, R. M. Kirby, and R. Whitaker, Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans, on Visualization and Computer Graphics, 12 (5): 1704-1711, Sept-Oct 2007.
[46] M. Meyer, B. Nelson, R. M. Kirby, and R. Whitaker, Particle systems for efficient and accurate high-order finite element visualization. IEEE Trans, on Visualization and Computer Graphics, 13 (5): 1015-1026, Sept-Oct 2007.
[47] M. Meyer, R. Whitaker, R. M. Kirby, C. Ledergerber, and H. Pris-ter, Particle-based sampling and meshing of surfaces in multimate-rial volumes. IEEE Trans, on Visualization and Computer Graphics, 14 (6): 1539-1546, Nov-Dec 2008.
[48] M. D. Meyer, P. Georgel, and R. T. Whitaker, Robust particle systems for curvature dependent sampling of implicit surfaces. In Proc. Shape Modeling and Applications (SMI), pages 124-133, June 2005.
[49] J. Miller and J. Furst, The maximal scale ridge: Incorporating scale into the ridge definition. In Proc. Scale Space Theory in Computer Vision, volume 1682 of Lecture Notes in Computer Science, pages 93-104. Springer, 1999.
[50] T. Möller, R. Machiraju, K. Mueller, and R. Yagel, Evaluation and design of filters using a Taylor series expansion. IEEE Trans, on Visualization and Computer Graphics, 3 (2): 184-199, 1997.
[51] L. O'Donnell, C. Westin, and A. Golby, Tract-based morphometry for white matter group analysis. Neurolmage, 45 (3): 832-844, Apr 2009.
[52] A. Pang and K. Smith, Spray rendering: Visualization using smart particles. In Proc. IEEE Visualization, pages 283-290, 1993.
[53] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley, Interactive ray tracing for volume visualization. IEEE Trans, on Visualization and Computer Graphics, 5 (3): 238-250, 1999.
[54] R. Peikert and M. Roth, The "parallel vectors" operator - a vector field visualization primitive. In Proc. IEEE Visualization, pages 263-270, 1999.
[55] P. Perona and J. Malik, Scale-space and edge detection using anisotropy diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7): 629-639, 1990.
[56] C. Pierpaoli and P. J. Basser, Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 33: 893-906, 1996. Erratum in Magn. Reson. Med. 1997; 37 (6): 972.
[57] A. Rösch, M. Ruhl, and D. Saupe, Interactive visualization of implicit surfaces with singularities. Eurographics Computer Graphics Forum, 16 (5): 295-306, 1997.
[58] T. Schultz, H. Theisel, and H. Seidel, Crease surfaces: From theory to extraction and application to diffusion tensor MRI. IEEE Trans, on Visualization and Computer Graphics, (to appear), 2009. doi:10.1109/TVCG.2009.44.
[59] I. Sluimer, A. Schilham, M. Prokop, and B. Van Ginneken, Computer analysis of computed tomography scans of the lung: A survey. IEEE Trans, on Medical Imaging, 25 (4): 385-405, 2006.
[60] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols, C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews, and T. E. J. Behrens, Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neurolmage, 31: 1487-1505, 2006.
[61] W Y. Su and J. C. Hart, A programmable particle system framework for shape modeling. In Proc. Shape Modeling and Applications (SMI), pages 114-123, 2005.
[62] R. Szeliski and D. Tonnesen, Surface modeling with oriented particle systems. Computer Graphics (Proc. ACM SIGGRAPH), 26 (2): 185-194, 1992.
[63] R. Szeliski, D. Tonnesen, and D. Terzopoulos, Modeling surfaces of arbitrary topology with dynamic particles. In Proceedings CVPR, pages 82-87, 1993.
[64] X. Tricoche, G. Kindlmann, and C.-F. Westin, Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans, on Visualization and Computer Graphics, 14 (6): 1627-1634, 2008.
[65] J. Weickert, C. Feddern, M. Welk, B. Burgeth, and T. Brox, PDEs for tensor image processing. In J. Weickert and H. Hagen, editors, Visualization and Image Processing of Tensor Fields. Springer, Berlin, 2005.
[66] J. Weickert, S. Ishikawa, and A. Imiya, Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10 (3): 237-252, May 1999.
[67] C.-F. Westin, S. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis, Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6 (2): 93-108, 2002.
[68] A. Witkin, Scale-space filtering: A new approach to multi-scale description. In Proc. IEEE Intl. Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 9, pages 150-153, March 1984.
[69] A. P. Witkin, Scale-space filtering. In Proc. Intl. Joint Conference on Artificial Intelligence, pages 1019-1021, Karlsruhe, Germany, 1983.
[70] A. P. Witkin and P. S. Heckbert, Using particles to sample and control implicit surfaces. Computer Graphics (Proc. ACM SIGGRAPH), 28: 269-277, 1994.
[71] C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans, on Image Processing, 7 (3): 359-369, 1998.
[72] S. Yamakawa and K. Shimada, High quality anisotropic tetrahedral mesh generation via packing ellipsoidal bubbles. In Proc. 9th Intl. Meshing Roundtable, pages 263-273, 2000.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool