The Community for Technology Leaders
Green Image
Issue No. 06 - November/December (2009 vol. 15)
ISSN: 1077-2626
pp: 1343-1350
Laura Fritz , VRVis Research Center, Vienna, Austriastill involve a considerable amount of manual work due to insufficient
Markus Hadwiger , VRVis Research Center, Vienna, Austriastill involve a considerable amount of manual work due to insufficient
Georg Geier , {|}Austrian Foundry Research Institute, Leoben, Austriatomized for specific applications with a high relevance for NDT prac-
Gerhard Pittino , Institute for Subsurface Engineering, University of Leoben, Austriaexpert users from this domain, both from a more practical engineer-
M. Eduard Gröller , Vienna University of Technology, Vienna, Austriaof view. The first application scenario that we describe (Section 3) is
This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of par ticles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete’s application direction. This is a crucial step in assessing the material’s behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industr y. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessar y analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.
Non-Destructive Testing, Multi-Dimensional Transfer Functions, Direction Visualization, Volume Rendering

G. Geier, L. Fritz, G. Pittino, M. Hadwiger and M. E. Gröller, "A Visual Approach to Efficient Analysis and Quantification of Ductile Iron and Reinforced Sprayed Concrete," in IEEE Transactions on Visualization & Computer Graphics, vol. 15, no. , pp. 1343-1350, 2009.
88 ms
(Ver 3.3 (11022016))