The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2009 vol.15)
pp: 1299-1306
Maarten H. Everts , University of Groningen
Henk Bekker , University of Groningen
Jos B.T.M. Roerdink , University of Groningen
Tobias Isenberg , University of Groningen
We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width attenuation increase depth perception, extending techniques from sparse line rendering to the illustrative visualization of dense line data. We demonstrate how the technique can be used, in particular, for illustrating DTI fiber tracts but also show examples from gas and fluid flow simulations and mathematics as well as describe how the technique extends to point data. We report on an informal evaluation of the illustrative DTI fiber tract visualizations with domain experts in neurosurgery and tractography who commented positively about the results and suggested a number of directions for future work.
Illustrative rendering and visualization, NPR, dense line data, DTI, black-and-white rendering, GPU technique.
Maarten H. Everts, Henk Bekker, Jos B.T.M. Roerdink, Tobias Isenberg, "Depth-Dependent Halos: Illustrative Rendering of Dense Line Data", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1299-1306, November/December 2009, doi:10.1109/TVCG.2009.138
[1] A. Appel, The Notion of Quantitative Invisibility and the Machine Rendering of Solids. In Proc. 22nd ACM National Conference, pp. 387–393, New York, 1967. ACM.
[2] A. Appel, F. J. Rohlf, and A. J. Stein, The Haloed Line Effect for Hidden Line Elimination. ACM SIGGRAPH Computer Graphics, 13 (3): 151–157, Aug. 1979.
[3] J. Blaas, C. P. Botha, B. Peters, F. M. Vos, and F. H. Post, Fast and Reproducible Fiber Bundle Selection in DTI Visualization. In Proc. Visualization, pp. 59–64, Los Alamitos, 2005. IEEE Computer Society.
[4] M. Botsch and L. Kobbelt, High-Quality Point-Based Rendering on Modern GPUs. In Proc. Pacific Graphics, pp. 335–343, Los Alamitos, 2003. IEEE Computer Society.
[5] S. Bruckner and E. Gröller, Enhancing Depth-Perception with Flexible Volumetric Halos. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1344–1351, 2007.
[6] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D. DeCarlo, Line Drawings from Volume Data. ACT Transactions on Graphics, 24 (3): 512–518, July 2005.
[7] B. Cabral and L. C. Leedom, Imaging Vector Fields using Line Integral Convolution. In Proc. SIGGRAPH, pp. 263–270, New York, 1993. ACM.
[8] O. Deussen and T. Strothotte, Computer-Generated Pen-and-Ink Illustration of Trees. In Proc. SIGGRAPH, pp. 13–18, New York, 2000. ACM.
[9] F. Dong, G. J. Clapworthy, H. Lin, and M. A. Krokos, Nonphotorealistic Rendering of Medical Volume Data. IEEE Computer Graphics & Applications, 23 (4): 44–52, July/Aug. 2003.
[10] D. Ebert and P. Rheingans, Volume Illustration: Non-Photorealistic Rendering of Volume Models. In Proc. Visualization, pp. 195–202, Los Alamitos, 2000. IEEE Computer Society.
[11] G. Elber, Line Illustrations ∊ Computer Graphics. The Visual Computer, 11 (6): 290–296, June 1995.
[12] M. Gross and H. Pfister editors. Point-Based Graphics. Elsevier, 2007.
[13] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Gröller, Two-Level Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 7 (3): 242–252, July–Sept. 2001.
[14] A. Helgeland and O. Andreassen, Visualization of Vector Fields Using Seed LIC and Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 673–682, Nov./Dec. 2004.
[15] A. Hertzmann and D. Zorin, Illustrating Smooth Surfaces. In Proc. SIGGRAPH, pp. 517–526, New York, 2000. ACM.
[16] V. Interrante and C. Grosch, Visualizing 3D Flow. IEEE Computer Graphics & Applications, 18 (4): 49–53, July 1998.
[17] T. Isenberg, M. S. T. Carpendale, and M. C. Sousa, Breaking the Pixel Barrier. In Proc. CAe, pp. 41–48, Aire-la-Ville, Switzerland, 2005. Euro-graphics Association.
[18] A. Joshi, J. Caban, P. Rheingans, and L. Sparling, Case Study on Visualizing Hurricanes Using Illustration-Inspired Techniques. IEEE Transactions on Visualization and Computer Graphics, 2009. To appear.
[19] M. Kaplan, Hybrid Quantitative Invisibility. In Proc. NPAR, pp. 51–52, New York, 2007. ACM.
[20] J. Klein, F. Ritter, H. K. Hahn, J. Rexilius, and H.-O. Peitgen, Brain Structure Visualization using Spectral Fiber Clustering. In Research Posters of SIGGRAPH, article no. 168, New York, 2006. ACM.
[21] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf, The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. Computer Graphics Forum, 23 (2): 203–221, June 2004.
[22] T. Luft, C. Colditz, and O. Deussen, Image Enhancement by Unsharp Masking the Depth Buffer. ACM Transactions on Graphics, 25 (3): 1206– 1213, July 2006.
[23] K.-L. Ma, G. Schussman, B. Wilson, K. Ko, J. Qiang, and R. Ryne, Advanced Visualization Technology for Terascale Particle Accelerator Simulations. In Proc. Supercomputing, pp. 19–30, Los Alamitos, 2002. IEEE Computer Society.
[24] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser, Visualization of Fibrous and Thread-like Data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1165–1172, Sept./Oct. 2006.
[25] S. Mori and P. C. van Zijl, Fiber Tracking: Principles and Strategies − A Technical Review. NMR Biomed, 15 (7-8): 468–480, Nov./Dec. 2002.
[26] Z. Nagy, J. Schneider, and R. Westermann, Interactive Volume Illustration. In B. Girod, H. Niemann, H.-P. Seidel, G. Greiner, and T. Ertl editors, , Proc. Vision, Modeling and Visualization, pp. 497–504, Berlin, 2002. Akademische Verlagsgesellschaft Aka GmbH.
[27] P. Neumann, T. Isenberg, and S. Carpendale, NPR Lenses: Interactive Tools for Non-Photorealistic Line Drawings. In Proc. Smart Graphics, pp. 10–22, Berlin, Heidelberg, 2007. Springer-Verlag.
[28] V. Petrovic, J. Fallon, and F. Kuester, Visualizing Whole-Brain DTI Tractography with GPU-based Tuboids and LoD Management. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1488–1495, Nov./ Dec. 2007.
[29] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, Surfels: Surface Elements as Rendering Primitives. In Proc. SIGGRAPH, pp. 335–342, New York, 2000. ACM.
[30] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, Feature Extraction and Visualization of Flow Fields. In Eurographics 2002 State of the Art Reports, pp. 69–100. Eurographics Assoc., Aire-la-Ville, Switzerland, 2002.
[31] F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and H.-O. Peitgen, Real-Time Illustration of Vascular Structures. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 877–884, Sept./Oct. 2006.
[32] R. Schmidt, T. Isenberg, P. Jepp, K. Singh, and B. Wyvill, Sketching, Scaffolding, and Inking: A Visual History for Interactive 3D Modeling. In Proc. NPAR, pp. 23–32, New York, 2007. ACM.
[33] G. Schussman and K.-L. Ma, Scalable Self-Orienting Surfaces: A Compact, Texture-Enhanced Representation for Interactive Visualization of 3D Vector Fields. In Proc. Pacific Graphics, pp. 356–365, Los Alamitos, 2002. IEEE Computer Society.
[34] C. Stoll, S. Gumhold, and H.-P. Seidel, Visualization With Stylized Line Primitives. In Proc. Visualization, pp. 695–702, Los Alamitos, 2005. IEEE Computer Society.
[35] T. Strothotte, B. Preim, A. Raab, J. Schumann, and D. R. Forsey, How to Render Frames and Influence People. Computer Graphics Forum, 13 (3): 455–466, Aug. 1994.
[36] N. A. Svakhine, Y. Jang, D. S. Ebert, and K. Gaither, Illustration and Photography Inspired Visualization of Flows and Volumes. In Proc. Visualization, pp. 687–694, Los Alamitos, 2005. IEEE Computer Society.
[37] M. Tarini, P. Cignoni, and C. Montani, Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1237–1244, Sept./Oct. 2006.
[38] S. M. F. Treavett and M. Chen, Pen-and-Ink Rendering in Volume Visualisation. In Proc. Visualization, pp. 203–210, Los Alamitos, 2000. IEEE Computer Society.
[39] I. Viola, A. Kanitsar, and M. E. Gröller, Importance-Driven Volume Rendering. In Proc. Visualization, pp. 139–145, Los Alamitos, 2004. IEEE Computer Society.
[40] A. Wenger, D. F. Keefe, S. Zhang, and D. H. Laidlaw, Interactive Volume Rendering of Thin Thread Structures within Multivalued Scientific Data Sets. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 664–672, Nov./Dec. 2004.
[41] G. A. Winkenbach and D. H. Salesin, Computer-Generated Pen-and-Ink Illustration. In Proc. SIGGRAPH, pp. 91–100, New York, 1994. ACM.
[42] J. Zander, T. Isenberg, S. Schlechtweg, and T. Strothotte, High Quality Hatching. Computer Graphics Forum, 23 (3): 421–430, Sept. 2004.
[43] L. Zhukov and A. H. Barr, Oriented Tensor Reconstruction. In C. D. Hansen, and C. R. Johnson editors, , The Visualization Handbook, chapter 15, pp. 313–326. Elsevier, Oxford, UK, 2004.
[44] M. Zöckler, D. Stalling, and H.-C. Hege, Interactive Visualization of 3D-Vector Fields Using Illuminated Stream Lines. In Proc. VIS, pp. 107–113, Los Alamitos, 1996. IEEE Computer Society.
3 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool