The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2009 vol.15)
pp: 1235-1242
Ove Daae Lampe , CMR AS and the University of Bergen
Carlos Correa , UC Davis
Kwan-Liu Ma , UC Davis
Helwig Hauser , University of Bergen
We present two visualization techniques for curve-centric volume reformation with the aim to create compelling comparative visualizations. A curve-centric volume reformation deforms a volume, with regards to a curve in space, to create a new space in which the curve evaluates to zero in two dimensions and spans its arc-length in the third. The volume surrounding the curve is deformed such that spatial neighborhood to the curve is preserved. The result of the curve-centric reformation produces images where one axis is aligned to arc-length, and thus allows researchers and practitioners to apply their arc-length parameterized data visualizations in parallel for comparison. Furthermore we show that when visualizing dense data, our technique provides an inside out projection, from the curve and out into the volume, which allows for inspection what is around the curve. Finally we demonstrate the usefulness of our techniques in the context of two application cases. We show that existing data visualizations of arc-length parameterized data can be enhanced by using our techniques, in addition to creating a new view and perspective on volumetric data around curves. Additionally we show how volumetric data can be brought into plotting environments that allow precise readouts. In the first case we inspect streamlines in a flow field around a car, and in the second we inspect seismic volumes and well logs fromdrilling.
Volume Deformation, Curve-Centric-Reformation, Comparative Visualization, Radial Ray-Casting
Ove Daae Lampe, Carlos Correa, Kwan-Liu Ma, Helwig Hauser, "Curve-Centric Volume Reformation for Comparative Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1235-1242, November/December 2009, doi:10.1109/TVCG.2009.136
[1] A. H. Barr, Global and local deformations of solid primitives. Siggraph Comp. Graph., 18 (3): 21–30, 1984.
[2] A. V. Bartrolí, R. Wegenkittl, A. König, and E. Gröller., Nonlinear virtual colon unfolding. In Proc. IEEE Vis., pages 411–420, 2001.
[3] M. Chen, C. Correa, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J. Walton, and P. J. Willis, Manipulating, Deforming and Animating Sampled Object Representations. Comp. Graph. For., 26 (4): 824–852, 2007.
[4] M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea, Spatial transfer functions: a unified approach to specifying deformation in volume modeling and animation. In Proc. Vol. Graph., pages 35–44. ACM, 2003.
[5] C. Correa, D. Silver, and M. Chen, Feature aligned volume manipulation for illustration and visualization. IEEE TVCG, 12 (5): 1069–1076, 2006.
[6] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Lecture Notes in Math., Vol. 571, pages 85–100. 1977.
[7] F. Frenet, Sur les courbes à double courbure. Journal des Mathematiques Pures et Appliquees, 17:437–447, 1852.
[8] J. Gain and D. Bechmann, A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 27 (4): 1–21, 2008.
[9] E. Gröller., Nonlinear ray tracing: Visualizing strange worlds. The Visual Computer, 11 (5): 263–274, 1995.
[10] S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis, Non-distorting flattening for virtual colonoscopy. In MICCAI, pages 358–366, 2000.
[11] S. He, R. Dai, B. Lu, C. Cao, H. Bai, and B. Jing, Medial axis reformation: A new visualization method for ct angiography. Academic Radiology, 8:726–733, 2001.
[12] W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman, Conformal virtual colon flattening. In Symp. Solid Phys. Mod., pages 85–93. ACM, 2006.
[13] J. Hunter, Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9 (3): 90–95, 2007.
[14] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and M. E. Gröller, CPR - Curved Planar Reformation. Proc. IEEE Vis., 0:37–44, 2002.
[15] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M. Gröller, Advanced curved planar reformation: flattening of vascular structures. Proc. IEEE Vis., pages 43–50, Oct. 2003.
[16] F. Klok, Two moving coordinate frames for sweeping along a 3d trajectory. Computer Aided Geometric Design, 3(3):217 − 229, 1986.
[17] Y. Kurzion and R. Yagel, Space deformation using ray deflectors. In 6th Eurographics Workshop on Rendering 95, pages 21–32, 1995.
[18] N. Lee and M. Rasch, Tangential curved planar reformation for topological and orientation invariant visualization of vascular trees. IEEE Eng. In Med. and Bio. Soc., pages 1073–1076, 2006.
[19] H. Löffelmann and E. Gröller, Ray Tracing with Extended Cameras. Journal of Visualization and Computer Animation, 7 (4): 211–228, 1996.
[20] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner, Fast volumetric deformation on general purpose hardware. In Proc. on Workshop on Graph. Hardware, pages 17–24. ACM, 2001.
[21] T. W. Sederberg and S. R. Parry, Free-form deformation of solid geometric models. In Proc. Siggraph '86, pages 151–160. ACM, 1986.
[22] K. Singh and E. Fiume, Wires: a geometric deformation technique. In Proc. Comp. Graph. and Interactive Tech., pages 405–414. ACM, 1998.
[23] R. W. Sumner, J. Schmid, and M. Pauly, Embedded deformation for shape manipulation. ACM Trans. Graph., 26(3):80, 2007.
[24] T. J. True and J. F. Hughes, Volume warping. In Proc. IEEE Vis., pages 308–315, 1992.
[25] E. R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press, 1997.
[26] T. Vrtovec, B. Likar, and F. Pernus, Automated curved planar reformation of 3D spine images. Physics in Medicine and Biology, 50(19):4527, 2005.
[27] G. Wang, G. McFarland, B. Brown, and M. Vannier, GI tract unraveling with curved cross sections. IEEE Trans. Med. Img., 17 (2): 318–322, 1998.
[28] R. Westermann and C. Rezk-Salama, Real-time volume deformations. In Comp. Graph. Forum, volume 20, pages 443–451, 2001.
[29] D. Williams, S. Grimm, E. Coto, A. Roudsari, and H. Hatzakis, Volumetric curved planar reformation for virtual endoscopy. IEEE TVCG, 14 (1): 109–119, 2008.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool