CSDL Home IEEE Transactions on Visualization & Computer Graphics 2008 vol.14 Issue No.05 - September/October

Subscribe

Issue No.05 - September/October (2008 vol.14)

pp: 1110-1125

Holger A. Meier , University of Kaiserslautern, Kaiserslautern

Michael Schlemmer , University of Kaiserslautern, Kaiserslautern

Christian Wagner , University of Kaiserslautern, Kaiserslautern

Andreas Kerren , Växjö University, Växjö

Hans Hagen , University of Kaiserslautern, Kaiserslautern

Ellen Kuhl , Stanford University, Stanford

Paul Steinmann , University of Kaiserslautern, Kaiserslautern

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.65

ABSTRACT

Interaction between particles in so-called granular media, such as soil and sand, plays an important role in the context of geomechanical phenomena and numerous industrial applications. A two scale homogenization approach based on a micro and a macro scale level is briefly introduced in this paper. Computation of granular material in such a way gives a deeper insight into the context of discontinuous materials and at the same time reduces the computational costs. However, the description and the understanding of the phenomena in granular materials are not yet satisfactory. A sophisticated problem-specific visualization technique would significantly help to illustrate failure phenomena on the microscopic level. As main contribution, we present a novel 2D approach for the visualization of simulation data, based on the above outlined homogenization technique. Our visualization tool supports visualization on micro scale level as well as on macro scale level. The tool shows both aspects closely arranged in form of multiple coordinated views to give users the possibility to analyze the particle behavior effectively. A novel type of interactive rose diagrams was developed to represent the dynamic contact networks on the micro scale level in a condensed and efficient way.

INDEX TERMS

Visualization, Information visualization, Applications

CITATION

Holger A. Meier, Michael Schlemmer, Christian Wagner, Andreas Kerren, Hans Hagen, Ellen Kuhl, Paul Steinmann, "Visualization of Particle Interactions in Granular Media",

*IEEE Transactions on Visualization & Computer Graphics*, vol.14, no. 5, pp. 1110-1125, September/October 2008, doi:10.1109/TVCG.2008.65REFERENCES

- [1] Abaqus FEA, http:/www.simulia.com/, 2008.
- [2] Ansys, http:/www.ansys.com/, 2008.
- [3] A. Barr , “Superquadrics and Angle-Preserving Transformations,”
IEEE Computer Graphics and Applications, vol. 1, no. 1, pp. 11-23, 1981. - [4] J. Blanchette and M. Summerfield ,
C++ GUI Programming with Qt4. Prentice Hall, 2006. - [8] P.A. Cundall , “A Discontinuous Future for Numerical Modeling in Soil and Rock,”
Proc. Third Int'l Conf. Discrete Element Methods (DEM '02) Discrete Element Methods, Numerical Modeling of Discontinua, B.K. Cook and R.P. Jensen, eds., pp. 3-4, 2002. - [9] P.A. Cundall and O.D.L. Strack ,
The Distinct Element Method as a Tool for Research in Granular Media, Report to the Nat'l Science Foundation Concerning NSF Grant ENG76-20711, Part 1, 1978. - [10] P.A. Cundall and O.D.L. Strack , “A Discrete Numerical Model for Granular Assemblies,”
Géotechnique, vol. 29, no. 1, pp. 47-65, 1979. - [11] P.A. Cundall and O.D.L. Strack ,
The Distinct Element Method as a Tool for Research in Granular Media, Report to the Nat'l Science Foundation Concerning NSF Grant ENG76-20711, 7, 1979. - [13] M. de Berg , M. van Kreveld , M. Overmars , and O. Schwarzkopf ,
Computational Geometry: Algorithms and Applications. Springer, Jan. 2000. - [15]
Dem Solutions, http://www.dem-solutions.comdemsolutions. html , 2008. - [16] S. Fortune , “A Sweepline Algorithm for Voronoi Diagrams,”
Algorithmica, vol. 2, pp. 153-174, 1987. - [17] H. Hauser , F. Ledermann , and H. Doleisch , “Angular Brushing of Extended Parallel Coordinates,”
Proc. IEEE Symp. Information Visualization (InfoVis '02), p. 127, 2002. - [18] R. Hill , “On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain,”
Proc. Royal Soc. London A , vol. 326, pp. 131-147, 1972. - [19] K.H.H. Huebner , D.L. Dewhirst , D.E. Smith , and T.G. Byrom ,
Finite Element Method. John Wiley & Sons, 2001. - [20]
Itasca Consultants GMBH, http:/www.itasca.de/, 2008. - [21] P. Jager , S.M. Schmalholz , D.W. Schmid , and E. Kuhl ,
Brittle Fracture During Folding Rocks—A Finite Element Study, submitted for publication, 2008. - [22] B. Lipchak and M. Ward , “Visualization of Cyclic Multivariate Data,”
Visualization 97 Late Breaking Hot Topics. pp.61-64, IEEE CSPress, 1997. - [23] L.E. Malvern ,
Introduction to the Mechanics of a Continuous Medium. Prentice Hall, 1969. - [26] F. Nightingale ,
Notes on Matters Affecting the Health, Efficiency, and Hospital Administration of the British Army. Harrison & Sons, 1858. - [27] D.H. Norrie and G. De Vries ,
An Introduction to Finite Element Analysis. Academic Press, 1978. - [29] J.C. Roberts , “Exploratory Visualization with Multiple Linked Views,”
Exploring Geovisualization, A. MacEachren, M.-J. Kraak, and J. Dykes, eds., Elsevier, Dec. 2004. - [30] C.D. Shaw , J.A. Hall , C. Blahut , D.S. Ebert , and D.A. Roberts , “Using Shape to Visualize Multivariate Data,”
Proc. Workshop New Paradigms in Information Visualization and Manipulation (NPIVM '99), pp. 17-20, 1999. - [32] G. Strang and G.J. Fix ,
An Analysis of the Finite Element Method. Prentice Hall, 1973. - [33] B. Stroustrup ,
The C++ Programming Language, special third ed. Addison-Wesley Longman, 2000. - [36] J.H. Ward, Jr. , “Hierarchical Grouping to Optimize an Objective Function,”
J. Am. Statistical Assoc., vol. 58, pp. 236-244, 1963. - [38] R.S. Wright , B. Lipchak , and N. Haemel ,
OpenGL SuperBible: Comprehensive Tutorial and Reference, fourth ed. Addison-Wesley Professional, 2007. - [39] T.I. Zohdi and P. Wriggers ,
Introduction to Computational Micromechanics. Springer, 2005. |