The Community for Technology Leaders
RSS Icon
Issue No.01 - January/February (2008 vol.14)
pp: 109-119
Curved Planar Reformation (CPR) has proved to be a practical and widely used tool for the visualization of curved tubular structures within the human body. It has been useful in medical procedures involving the examination of blood vessels and the spine. However, it is more difficult to use it for large, tubular, structures such as the trachea and the colon because abnormalities may be smaller relative to the size of the structure and may not have such distinct density and shape characteristics.Our new approach improves on this situation by using volume rendering for hollow regions and standard CPR for the surrounding tissue. This effectively combines gray scale contextual information with detailed color information from the area of interest. The approach is successfully used with each of the standard CPR types and the resulting images are promising as an alternative to virtual endoscopy.Because the CPR and the volume rendering are tightly coupled, the projection method used has a significant effect on properties of the volume renderer such as distortion and isometry. We describe and compare the different CPR projection methods and how they affect the volume rendering process.A version of the algorithm is also presented which makes use of importance driven techniques; this ensures the users attention is always focused on the area of interest and also improves the speed of the algorithm.
curved planar reformation, virtual endoscopy, colon screening
David Williams, S?ren Grimm, Ernesto Coto, Abdul Roudsari, Haralambos Hatzakis, "Volumetric Curved Planar Reformation for Virtual Endoscopy", IEEE Transactions on Visualization & Computer Graphics, vol.14, no. 1, pp. 109-119, January/February 2008, doi:10.1109/TVCG.2007.1068
[1] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and M.E. Gröller, “CPR—Curved Planar Reformation,” Proc. IEEE Conf. Visualization (VIS '02), 2002.
[2] R.S. Avila, L.M. Sobierajski, and A.E. Kaufman, “Towards a Comprehensive Volume Visualization System,” Proc. IEEE Conf. Visualization (VIS '92), pp. 13-20, 1992.
[3] S. Lakare and A. Kaufman, “Light Weight Space Leaping Using Ray Coherence,” Proc. IEEE Conf. Visualization (VIS '04), pp. 19-26, 2004.
[4] S. You, L. Hong, M. Wan, K. Junyaprasert, A. Kaufman, S. Muraki, Y. Zhou, M. Wax, and Z. Liang, “Interactive Volume Rendering for Virtual Colonoscopy,” Proc. IEEE Conf. Visualization (VIS '97), pp. 433-446, 1997.
[5] U. Tiede, N. von Sternberg-Gospos, P. Steiner, and K.H. Höhne, “Virtual Endoscopy Using Spherical QuickTime-VR Panorama Views,” Studies in Health Technology and Informatics, vol. 85, pp.523-528, 2002.
[6] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, “Virtual Voyage: Interactive Navigation in the Human Colon,” Proc. ACM SIGGRAPH '97, pp. 27-34, 1997.
[7] A. Laghi, R. Iannaccone, I. Carbone, C. Catalano, E.D. Giulio, A. Schillaci, and R. Passariello, “Detection of Colorectal Lesions with Virtual Computed Tomographic Colonography,” Am. J. Surgery, vol. 183, no. 2, pp. 124-131, 2002.
[8] A. Vilanova i Bartrolí, R. Wegenkittl, A. König, and E. Gröller, “Nonlinear Virtual Colon Unfolding,” Proc. IEEE Conf. Visualization (VIS '01), pp. 411-420, 2001.
[9] A. Vilanova i Bartrolí, R. Wegenkittl, A. König, E. Gröller, and E. Sorantin, “Virtual Colon Flattening,” Proc. Joint Eurographics/IEEE Trans. Visualization and Computer Graphics Symp. Visualization (VisSym '01), pp. 127-136, 2001.
[10] S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis, “Non-Distorting Flattening for Virtual Colonoscopy,” Proc. Third Int'l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI '00), 2000.
[11] S. He, R. Dai, B. Lu, C. Cao, H. Bai, and B. Jing, “Medial Axis Reformation: A New Visualization Method for CT Angiography,” Academic Radiology, vol. 8, pp. 726-733, 2001.
[12] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, June 1988.
[13] M. Straka, M. Cervenansky, A. La Cruz, A. Köchl, M. Šrámek, M.E. Gröller, and D. Fleischmann, “The VesselGlyph: Focus & Context Visualization in CT—Angiography,” Proc. IEEE Conf. Visualization (VIS '04), pp. 385-392, 2004.
[14] F. Klok, “Two Moving Coordinate Frames for Sweeping along a 3D Trajectory,” Computer Aided Geometric Design, vol. 3, no. 3, pp.217-229, 1986.
[15] T. Vrtovec, B. Likar, and F. Pernus, “Curved Planar Reformation of CT Spine Data,” Proc. SPIE—Medical Imaging 2005: Image Processing, vol. 5747, pp. 1446-1456, 2005.
[16] A. Kanitsar, R. Wegenkittl, P. Felkel, D. Fleischmann, D. Sandner, and M.E. Gröller, “Computed Tomography Angiography: A Case Study of Peripheral Vessel Investigation,” Proc. IEEE Conf. Visualization (VIS '01), pp. 477-480, 2001.
[17] M. Levoy, “Efficient Ray Tracing of Volume Data,” ACM Trans. Graphics, vol. 9, no. 3, pp. 245-261, 1990.
[18] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax, “Volume Rendering Based Interactive Navigation within the Human Colon,” Proc. IEEE Conf. Visualization (VIS '99), pp. 397-400, 1999.
[19] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek, “Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing,” Vision, Modeling, and Visualization, B. Girod, M.Magnor, and H.P. Seidel, eds., Akademische Verlagsgesellschaft Aka, 2004.
[20] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, “Interactive Ray Tracing for Isosurface Rendering,” Proc. IEEE Conf. Visualization (VIS '98), pp. 233-238, 1998.
[21] M.E. Gröller, “Nonlinear Raytracing—Visualizing Strange Worlds,” Visual Computer, vol. 11, no. 5, pp. 263-274, 1995.
[22] G. Wang, S.B. Dave, B.P. Brown, Z. Zhang, E.G. McFarland, J.W. Haller, and M.W. Vannier, “Colon Unraveling Based on Electrical Field: Recent Progress and Further Work,” Proc. SPIE, vol. 3660, no. 1, pp. 125-132, 1999.
[23] R. Adams and L. Bischof, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, pp. 641-647, 1994.
[24] A. Mehnert and P. Jackway, “An Improved Seeded Region Growing Algorithm,” Pattern Recognition Letters, vol. 18, pp.1065-1071, 1997.
3 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool